Mobile robots: a study on sensing and perception systems

  • Marco Antonio Simões Teixeira UTFPR
  • Andre Schneider de Oliveira UTFPR
  • Lucia Valeria Ramos de Arruda UTFPR

Resumo


Sensors traditionally used in mobile robotics provide raw data. Most of this data is processed and converted into information. This thesis had to goal study traditional sensing techniques, using RGB and 3D sensors, and propose a new sensing approach embedded in a compact hardware, named the DeepSpatial sensor. To reach the goal, a study of point cloud processing in land robots and air flights was carried out, and later the hardware and software architecture was proposed for a new sensing approach. The thesis was developed in the collection of articles model, consisting of 4 articles published in journals, where each chapter presents the summary of each published paper.

Palavras-chave: Sensor modeling and data interpretation (e.g. Models and software for sensor data integration, 3D scene analysis, environment description and modeling, pattern recognition), Robot programming, Sensor networks, architectures of embedded hardware and software

Referências

Boulch, A., Saux, B., and Audebert, N. (2017). Unstructured point cloud semantic labeling using deep segmentation networks. 3DOR, 2:7.

Cao, Y. U., Fukunaga, A. S., and Kahng, A. (1997). Cooperative mobile robotics: Antecedents and directions. Autonomous robots, 4(1):7–27.

Giordano, F., Mattei, G., Parente, C., Peluso, F., and Santamaria, R. (2016). Integrating sensors into a marine drone for bathymetric 3d surveys in shallow waters. Sensors, 16(1):41.

Hagebeuker, D. B. and Marketing, P. (2007). A 3d time of flight camera for object detection. PMD Technologies GmbH, Siegen.

Hayati, S. (1986). Hybrid position/force control of multi-arm cooperating robots. In Proceedings. 1986 IEEE International Conference on Robotics and Automation, volume 3, pages 82–89. IEEE.

Hu, H., Gu, J., Zhang, Z., Dai, J., and Wei, Y. (2018). Relation networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3588–3597.

Huang, A. S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., and Roy, N. (2017). Visual odometry and mapping for autonomous flight using an rgb-d camera. In Robotics Research, pages 235–252. Springer.

Liang, M., Yang, B., Wang, S., and Urtasun, R. (2018). Deep continuous fusion for multisensor 3d object detection. In Proceedings of the European Conference on Computer Vision (ECCV), pages 641–656.

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., and Pietikäinen, M. (2020). Deep learning for generic object detection: A survey. International journal of computer vision, 128(2):261–318.

Nehmzow, U. (2012). Mobile robotics: a practical introduction. Springer Science & Business Media.

Parker, L. E., Rus, D., and Sukhatme, G. S. (2016). Multiple mobile robot systems. In Springer Handbook of Robotics, pages 1335–1384. Springer.

Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7263–7271.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv

Rocchini, C., Cignoni, P., Montani, C., Pingi, P., and Scopigno, R. (2001). A low cost 3d scanner based on structured light. In Computer Graphics Forum, volume 20, pages 299–308. Wiley Online Library.

Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud library (pcl). In 2011 IEEE international conference on robotics and automation, pages 1–4. IEEE.

Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F., and Franchi, A. (2017). 6d physical interaction with a fully actuated aerial robot. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 5190–5195. IEEE.

Simon, M., Amende, K., Kraus, A., Honer, J., Samann, T., Kaulbersch, H., Milz, S., and Gross, M. H. (2019). Complexer-yolo: Real-time 3d object detection and tracking on semantic point clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 0–0.

Simony, M., Milzy, S., Amendey, K., and Gross, H.-M. (2018). Complex-yolo: An eulerregion-proposal for real-time 3d object detection on point clouds. In Proceedings of the European Conference on Computer Vision (ECCV), pages 0–0.

Tan, Y. H., Siddall, R., and Kovac, M. (2017). Efficient aerial–aquatic locomotion with a single propulsion system. IEEE Robotics and Automation Letters, 2(3):1304–1311.

Teixeira, M. A. S., Neves-Jr, F., Koubaa, A., Arruda, L. V. R., Oliveira, A. S., et al. (2021). Deepspatial: Intelligent spatial sensor to perception of things. IEEE Sensors Journal, 21(4):3966–3976.

Teixeira, M. A. S., Neves-Jr, F., Koubaa, A., Arruda, L. V. R. D., and Oliveira, A. S. D. (2020). A quadral-fuzzy control approach to flight formation by a fleet of unmanned aerial vehicles. IEEE Access, 8:64366–64381.

Teixeira, M. A. S., Nogueira, R. C. M., Dalmedico, N., Santos, H. B., Arruda, L. V. R., Neves-Jr, F., Pipa, D. R., Ramos, J. E., and Oliveira, A. S. (2019). Intelligent 3d perception system for semantic description and dynamic interaction. Sensors, 19(17):3764.

Teixeira, M. A. S., Santos, H. B., Dalmedico, N., Arruda, L. V. R., Neves-Jr, F., and Oliveira, A. S. (2018). Intelligent environment recognition and prediction for ndt inspection through autonomous climbing robot. Journal of Intelligent & Robotic Systems, 92(2):323–342.

Wang, P., Li, W., Ogunbona, P., Wan, J., and Escalera, S. (2018). Rgb-d-based human motion recognition with deep learning: A survey. Computer Vision and Image Understanding, 171:118–139.

Yang, B., Luo, W., and Urtasun, R. (2018). Pixor: Real-time 3d object detection from point clouds. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 7652–7660.

Zhao, Z., Zheng, P., Xu, S., and Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11):3212–3232.
Publicado
14/10/2021
TEIXEIRA, Marco Antonio Simões; OLIVEIRA, Andre Schneider de; ARRUDA, Lucia Valeria Ramos de. Mobile robots: a study on sensing and perception systems. In: CONCURSO DE TESES E DISSERTAÇÕES EM ROBÓTICA - CTDR (DOUTORADO) - SIMPÓSIO BRASILEIRO DE ROBÓTICA E SIMPÓSIO LATINO-AMERICANO DE ROBÓTICA (SBR/LARS), 9. , 2021, Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 82-93. DOI: https://doi.org/10.5753/wtdr_ctdr.2021.18687.