Uma comparação de desempenho de algoritmos para criptografia pós-quântica

  • Pedro Rubbioli Amorim UNICAMP
  • Marco A. A. Henriques UNICAMP

Abstract


With the possible arrival of the first operational quantum computer that can break the security of traditional asymmetric cryptographic algorithms, entities that promote data security have been mobilizing themselves to offer a response to this advent. There are several proposals for a new standard of post-quantum cryptography, each one based on a different mathematical method. This work evaluates the main candidate proposals participating in the second round of NIST Post-Quantum Cryptography Standardization Process, showing their performance relative to each other. The aim of this paper is to help users make a more informed choice.

References

Barreto, P., et. al. (2013). Em Minicursos do XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013 Capítulo 2 Introdução à criptografia pós-quântica

Bernstein, D. J., Buchmann, J., & Dahmn, E. (2010). Post-quantum cryptography. Berlin: Springer.

Babai, L. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986). https://doi.org/10.1007/BF02579403

Chandel S., Cao W., Sun Z., Yang J., Zhang B., Ni TY. (2020) A Multi-dimensional Adversary Analysis of RSA and ECC in Blockchain Encryption. In: Arai K., Bhatia R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-12385-7_67

Chen et. al., Report on Post-Quantum Cryptography, Computer Security Division, National Institute of Standards and Technology, EUA, NISTIR 8105, 2016

Douglas Stebila, Michele Mosca. Post-quantum key exchange for the Internet and the Open Quantum Safe project. In Roberto Avanzi, Howard Heys, editors, Selected Areas in Cryptography (SAC) 2016, LNCS, vol. 10532, pp. 1–24. Springer, October 2017.

Daemen, J., & Rijmen, V. (2002). The Design of Rijndael: AES - The Advanced Encryption Standard. Springer. Belgium

Hamburg M., (2017). “Post-quantum cryptography proposal: ThreeBears.”. Jao D., Azarderakhsh R., Campagna M., Costello C., De Feo L., Hess B., Jalali A., Koziel B., LaMacchia B., Longa P., Naehrig M., Renes J., Soukharev V., and Urbanik D., (2017).“Supersingular Isogeny Key Encapsulation,” Submission to the NIST Post-Quantum Standardization Project.

Goldreich O., Goldwasser S., Halevi S. (1997) Public-key cryptosystems from lattice reduction problems. In: Kaliski B.S. (eds) Advances in Cryptology — CRYPTO '97. CRYPTO 1997. Lecture Notes in Computer Science, vol 1294. Springer, Berlin, Heidelberg.

Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation 48:203–209

Paar, C., Pelzl, J. (2013). SHA-3 and The Hash Function Keccak An extension chapter for “Understanding Cryptography — A Textbook for Students and Practitioners” Springer.

Paar, C., Pelzl, J. (2009). Understanding Cryptography — A Textbook for Students and Practitioners. Springer.

Rivest R. L., Shamir A., Adleman L. (1978). A method for obtaining digital signatures and public key cryptosystems, Commun. ACM 21

Shor P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA)
Published
2020-10-13
AMORIM, Pedro Rubbioli; HENRIQUES, Marco A. A.. Uma comparação de desempenho de algoritmos para criptografia pós-quântica. In: WORKSHOP ON SCIENTIFIC INITIATION AND UNDERGRADUATE WORKS - BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 20. , 2020, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 256-269. DOI: https://doi.org/10.5753/sbseg_estendido.2020.19291.

Most read articles by the same author(s)