Uma comparação de desempenho de algoritmos para criptografia pós-quântica
Resumo
Com a possível chegada do primeiro computador quântico operacional que poderá quebrar a segurança de algoritmos criptográficos assimétricos tradicionais, as entidades responsáveis por promover a segurança de dados têm se mobilizado a oferecer uma resposta para tal advento. Existem diversas propostas para um novo padrão de criptografia pós-quântica, cada uma baseada em um método matemático diferente. Este trabalho avalia as principais propostas que participam da segunda rodada do Processo de Padronização Criptográfica Pós-Quântica do NIST, apresentando as performances de umas em relação às outras. O objetivo deste artigo é ajudar usuários a fazer uma escolha mais informada.Referências
Barreto, P., et. al. (2013). Em Minicursos do XIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais — SBSeg 2013 Capítulo 2 Introdução à criptografia pós-quântica
Bernstein, D. J., Buchmann, J., & Dahmn, E. (2010). Post-quantum cryptography. Berlin: Springer.
Babai, L. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986). https://doi.org/10.1007/BF02579403
Chandel S., Cao W., Sun Z., Yang J., Zhang B., Ni TY. (2020) A Multi-dimensional Adversary Analysis of RSA and ECC in Blockchain Encryption. In: Arai K., Bhatia R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-12385-7_67
Chen et. al., Report on Post-Quantum Cryptography, Computer Security Division, National Institute of Standards and Technology, EUA, NISTIR 8105, 2016
Douglas Stebila, Michele Mosca. Post-quantum key exchange for the Internet and the Open Quantum Safe project. In Roberto Avanzi, Howard Heys, editors, Selected Areas in Cryptography (SAC) 2016, LNCS, vol. 10532, pp. 1–24. Springer, October 2017.
Daemen, J., & Rijmen, V. (2002). The Design of Rijndael: AES - The Advanced Encryption Standard. Springer. Belgium
Hamburg M., (2017). “Post-quantum cryptography proposal: ThreeBears.”. Jao D., Azarderakhsh R., Campagna M., Costello C., De Feo L., Hess B., Jalali A., Koziel B., LaMacchia B., Longa P., Naehrig M., Renes J., Soukharev V., and Urbanik D., (2017).“Supersingular Isogeny Key Encapsulation,” Submission to the NIST Post-Quantum Standardization Project.
Goldreich O., Goldwasser S., Halevi S. (1997) Public-key cryptosystems from lattice reduction problems. In: Kaliski B.S. (eds) Advances in Cryptology — CRYPTO '97. CRYPTO 1997. Lecture Notes in Computer Science, vol 1294. Springer, Berlin, Heidelberg.
Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation 48:203–209
Paar, C., Pelzl, J. (2013). SHA-3 and The Hash Function Keccak An extension chapter for “Understanding Cryptography — A Textbook for Students and Practitioners” Springer.
Paar, C., Pelzl, J. (2009). Understanding Cryptography — A Textbook for Students and Practitioners. Springer.
Rivest R. L., Shamir A., Adleman L. (1978). A method for obtaining digital signatures and public key cryptosystems, Commun. ACM 21
Shor P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA)
Bernstein, D. J., Buchmann, J., & Dahmn, E. (2010). Post-quantum cryptography. Berlin: Springer.
Babai, L. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986). https://doi.org/10.1007/BF02579403
Chandel S., Cao W., Sun Z., Yang J., Zhang B., Ni TY. (2020) A Multi-dimensional Adversary Analysis of RSA and ECC in Blockchain Encryption. In: Arai K., Bhatia R. (eds) Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-12385-7_67
Chen et. al., Report on Post-Quantum Cryptography, Computer Security Division, National Institute of Standards and Technology, EUA, NISTIR 8105, 2016
Douglas Stebila, Michele Mosca. Post-quantum key exchange for the Internet and the Open Quantum Safe project. In Roberto Avanzi, Howard Heys, editors, Selected Areas in Cryptography (SAC) 2016, LNCS, vol. 10532, pp. 1–24. Springer, October 2017.
Daemen, J., & Rijmen, V. (2002). The Design of Rijndael: AES - The Advanced Encryption Standard. Springer. Belgium
Hamburg M., (2017). “Post-quantum cryptography proposal: ThreeBears.”. Jao D., Azarderakhsh R., Campagna M., Costello C., De Feo L., Hess B., Jalali A., Koziel B., LaMacchia B., Longa P., Naehrig M., Renes J., Soukharev V., and Urbanik D., (2017).“Supersingular Isogeny Key Encapsulation,” Submission to the NIST Post-Quantum Standardization Project.
Goldreich O., Goldwasser S., Halevi S. (1997) Public-key cryptosystems from lattice reduction problems. In: Kaliski B.S. (eds) Advances in Cryptology — CRYPTO '97. CRYPTO 1997. Lecture Notes in Computer Science, vol 1294. Springer, Berlin, Heidelberg.
Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation 48:203–209
Paar, C., Pelzl, J. (2013). SHA-3 and The Hash Function Keccak An extension chapter for “Understanding Cryptography — A Textbook for Students and Practitioners” Springer.
Paar, C., Pelzl, J. (2009). Understanding Cryptography — A Textbook for Students and Practitioners. Springer.
Rivest R. L., Shamir A., Adleman L. (1978). A method for obtaining digital signatures and public key cryptosystems, Commun. ACM 21
Shor P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society, Los Alamitos, CA)
Publicado
13/10/2020
Como Citar
AMORIM, Pedro Rubbioli; HENRIQUES, Marco A. A..
Uma comparação de desempenho de algoritmos para criptografia pós-quântica. In: WORKSHOP DE TRABALHOS DE INICIAÇÃO CIENTÍFICA E DE GRADUAÇÃO - SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 20. , 2020, Evento Online.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2020
.
p. 256-269.
DOI: https://doi.org/10.5753/sbseg_estendido.2020.19291.