Estudo comparativo de desempenho em Assinaturas Digitais Pós-Quânticas para plataformas de IoT

  • Vitor Nagata UNICAMP
  • Marco A. A. Henriques UNICAMP

Resumo


Grandes avanços no campo da computação quântica têm aumentado a preocupação com a quebra de algoritmos criptográficos atuais, como RSA e ECC. Para manter a segurança e dos protocolos atuais, já estão sendo pesquisados algoritmos resistentes a ataques quânticos. Neste artigo, apresentamos algumas das ideias por trás dos novos algoritmos de assinatura pós-quânticos e comparamos seus desempenhos em dois contextos: um em ambiente de desktop e outro voltado para aplicações IoT.

Referências

Ajtai, M. (1996). Generating hard instances of lattice problems. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 99–108.

An, H., Choi, R., Lee, J., and Kim, K. (2018). Performance evaluation of liboqs in open quantum safe project (part i). In 2018 Symposium on Cryptography and Information Security (SCIS 2018). IEICE Technical Committee on Information Security.

Babai, L. (1986). On lovász’lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1–13.

Bernstein, D. J. and Lange, T. (2019). ebacs: Ecrypt benchmarking of cryptographic systems. URL: https://bench.cr.yp.to/, Acessado em 13/09/2020.

Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D., and Zaverucha, G. (2017). Post-quantum zero-knowledge and signatures from symmetric-key primitives. In Proceedings of the 2017 acm sigsac conference on computer and communications security, pages 1825–1842.

Goldreich, O., Goldwasser, S., and Halevi, S. (1997). Public-key cryptosystems from lattice reduction problems. In Annual International Cryptology Conference, pages 112–131. Springer.

Jao, D. and De Feo, L. (2011). Towards quantum-resistant cryptosystems from super-singular elliptic curve isogenies. In International Workshop on Post-Quantum Cryptography, pages 19–34. Springer.

Lamport, L. (1979). Constructing digital signatures from a one-way function. Technical report, Technical Report CSL-98, SRI International.

Merkle, R. C. (1989). A certified digital signature. In Conference on the Theory and Application of Cryptology, pages 218–238. Springer.

NISTPQC (2016). Submission requirements and evaluation criteria for the post-quantum cryptography standardization process. https://csrc.nist.gov.

Patarin, J., Kipnis, A., and Goubin, L. (1999). Unbalanced oil and vinegar signature schemes. In International Conference on the Theory and Applications of Cryptographic Techniques, pages 206–222. Springer.

Regev, O. (2009). On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM), 56(6):1–40.

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41(2):303–332.

Stebila, D. and Mosca, M. (2016). Post-quantum key exchange for the internet and the open quantum safe project. In International Conference on Selected Areas in Cryptography, pages 14–37. Springer.
Publicado
13/10/2020
Como Citar

Selecione um Formato
NAGATA, Vitor; HENRIQUES, Marco A. A.. Estudo comparativo de desempenho em Assinaturas Digitais Pós-Quânticas para plataformas de IoT. In: WORKSHOP DE TRABALHOS DE INICIAÇÃO CIENTÍFICA E DE GRADUAÇÃO - SIMPÓSIO BRASILEIRO DE SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS COMPUTACIONAIS (SBSEG), 20. , 2020, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2020 . p. 284-297. DOI: https://doi.org/10.5753/sbseg_estendido.2020.19293.

Artigos mais lidos do(s) mesmo(s) autor(es)