Kubemon: extrator de métricas de desempenho de sistema operacional e aplicações conteinerizadas em ambientes de nuvem no domínio do provedor
Resumo
A computação em nuvem, especialmente através das aplicações conteinerizadas, tem sido cada vez mais utilizada nos últimos anos. Em geral, as métricas de desempenho das aplicações implantadas são fornecidas pelos provedores de nuvem, o que pode levar a um conflito de interesses. Visando coletar métricas para avaliação sem tais conflitos de interesse, como parte de um trabalho para o ICC2021, é proposto o Kubemon que é capaz de coletar 14 métricas na primeira versão e 122 na segunda, considerando o sistema operacional, contêineres e os processos do contêiner, do ponto de vista do provedor. A ferramenta continua em desenvolvimento.
Referências
Arunarani, A., Manjula, D., and Sugumaran, V. (2019). Task scheduling techniques in cloud computing: A literature survey. Future Generation Computer Systems, 91:407–415.
Bashir, N., Deng, N., Rzadca, K., Irwin, D., Kodak, S., and Jnagal, R. (2021). Take it to the limit: Peak prediction-driven resource overcommitment in datacenters. In Proceedings of the Sixteenth European Conference on Computer Systems, EuroSys ’21, page 556–573, New York, NY, USA. Association for Computing Machinery.
dos Santos, R. R., Viegas, E. K., Santin, A. O., and Cogo, V. V. (2023a). Reinforcement learning for intrusion detection: More model longness and fewer updates. IEEE Transactions on Network and Service Management, 20(2):2040–2055.
dos Santos, R. R., Viegas, E. K., Santin, A. O., and Tedeschi, P. (2023b). Federated learning for reliable model updates in network-based intrusion detection. Computers & Security, 133:103413.
Goyal, S. (2014). Public vs private vs hybrid vs community cloud computing: A critical review. pages 20–29. International Journal of Computer Network and Information Security.
Horchulhack, P., Viegas, E. K., and Santin, A. O. (2022). Detection of service provider hardware over-commitment in container orchestration environments. In GLOBECOM 2022 2022 IEEE Global Communications Conference, pages 6354–6359.
Kholidy, H. A. (2020). An intelligent swarm based prediction approach for predicting cloud computing user resource needs. Computer Communications, 151:133–144.
Ramos, F., Viegas, E., Santin, A. O., Horchulhack, P., dos Santos, R., and Espindola, A. (2021). A machine learning model for detection of docker-based APP overbooking on kubernetes. In 2021 IEEE International Conference on Communications (ICC): SAC Cloud Computing, Networking and Storage Track (IEEE ICC’21 - SAC-02 CCNS Track), Montreal, Canada.
Son, J., Dastjerdi, A. V., Calheiros, R. N., and Buyya, R. (2017). Sla-aware and energy-efficient dynamic overbooking in sdn-based cloud data centers. IEEE Transactions on Sustainable Computing, 2(2):76–89.
Tomás, L. and Tordsson, J. (2013). Improving cloud infrastructure utilization through overbooking. In Proceedings of the 2013 ACM Cloud and Autonomic Computing conference, pages 1–10.
Tomás, L. and Tordsson, J. (2014). An autonomic approach to risk-aware data center overbooking. IEEE Transactions on Cloud Computing, 2(3):292–305.
Vicentini, C., Santin, A., Viegas, E., and Abreu, V. (2018). A machine learning auditing model for detection of multi-tenancy issues within tenant domain. In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-GRID). IEEE.
Xing, T., Barbalace, A., Olivier, P., Karaoui, M. L., Wang, W., and Ravindran, B. (2022). H-container: Enabling heterogeneous-isa container migration in edge computing. ACM Trans. Comput. Syst., 39(1–4).