Intrusion Detection in the Internet of Things (IoT): An Experimentation Environment for Obtaining Real Data on Emerging Protocols

  • Isadora F. Spohr UFSM
  • Douglas R. Fideles UFU
  • Silvio E. Quincozes UFU / UNIPAMPA
  • Juliano F. Kazienko UFSM
  • Vagner E. Quincozes UFF

Abstract


Efficient communication between Internet of Things (IoT) devices, especially in environments with limited computational resources, is a constant challenge. New protocols, such as Zenoh and the Data Distribution Service (DDS), have emerged to meet these demands, offering high performance and advanced features for large-scale distributed systems. However, the literature lacks public datasets for protocols like Zenoh and XRCE-DDS (eXtremely Resource Constrained Environments), limiting research in performance and security. This work presents the development of a detailed dataset on the performance of these protocols in various communication scenarios, providing a valuable resource for future research in real-time communication in IoT systems.

References

Abdulghani, R. M., Alrehili, M. M., Almuhanna, A. A., and Alhazmi, O. H. (2020). Vulnerabilities and security issues in iot protocols. In 2020 First international conference of smart systems and emerging technologies (SMARTTECH), pages 7–12. IEEE.

Alatram, A., Sikos, L. F., Johnstone, M., Szewczyk, P., and Kang, J. J. (2023). DoS/DDoS-MQTT-IoT: A dataset for evaluating intrusions in IoT networks using the MQTT protocol. Computer Networks, 231:109809.

Dehnavi, S., Goswami, D., Koedam, M., Nelson, A., and Goossens, K. (2021). Modeling, implementation, and analysis of XRCE-DDS applications in distributed multi-processor real-time embedded systems. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1148–1151. IEEE.

Ferraz Junior, N., Silva, A. A., Guelfi, A. E., and Kofuji, S. T. (2022). Performance evaluation of publish-subscribe systems in IoT using energy-efficient and context-aware secure messages. Journal of Cloud Computing, 11(1):6.

Foundation, O. (2016). Scenario-aware dataflow. [link]. Accessed: 19 jun. 2024.

Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis, C., and Bellekens, X. (2020). Machine learning based IoT intrusion detection system: An MQTT case study (MQTT-IoT-IDS2020 dataset). In International networking conference, pages 73–84. Springer.

Liang, W.-Y., Yuan, Y., and Lin, H.-J. (2023). A performance study on the throughput and latency of Zenoh, MQTT, Kafka, and DDS. arXiv preprint arXiv:2303.09419.

López Escobar, J. J., Díaz-Redondo, R. P., and Gil-Castiñeira, F. (2024). Unleashing the power of decentralized serverless IoT dataflow architecture for the Cloud-to-Edge Continuum: a performance comparison. Annals of Telecommunications, 79(3):135–148.

Maggi, F., Vosseler, R., Cheng, M., Kuo, P., Toyama, C., Yen, T., and Vilches, E. B. V. (2022). A Security Analysis of the Data Distribution Service (DDS) Protocol. Trend Micro Research, Inc., Japan, pages 15–20.

Quincozes, V. E., Quincozes, S. E., Kazienko, J. F., Gama, S., Cheikhrouhou, O., and Koubaa, A. (2024). A survey on IoT application layer protocols, security challenges, and the role of explainable AI in IoT (XAIoT). International Journal of Information Security, 23(3):1975–2002.

Silva Cotta, J. L., Agar, D., Bertaska, I. R., Inness, J. P., and Gutierrez, H. (2023). Latency Reduction and Packet Synchronization in Low-Resource Devices Connected by DDS Networks in Autonomous UAVs. Sensors, 23(22):9269.

Vaccari, I., Chiola, G., Aiello, M., Mongelli, M., and Cambiaso, E. (2020). MQTTset, a new dataset for machine learning techniques on MQTT. Sensors, 20(22):6578.

Zhang, J., Yu, X., Ha, S., Pena Queralta, J., and Westerlund, T. (2023). Comparison of DDS, MQTT, and Zenoh in Edge-to-Edge and Edge-to-Cloud Communication for Distributed ROS 2 Systems. arXiv e-prints, pages arXiv–2309.
Published
2024-09-16
SPOHR, Isadora F.; FIDELES, Douglas R.; QUINCOZES, Silvio E.; KAZIENKO, Juliano F.; QUINCOZES, Vagner E.. Intrusion Detection in the Internet of Things (IoT): An Experimentation Environment for Obtaining Real Data on Emerging Protocols. In: WORKSHOP ON SCIENTIFIC INITIATION AND UNDERGRADUATE ONGOING WORKS - BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 24. , 2024, São José dos Campos/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 364-369. DOI: https://doi.org/10.5753/sbseg_estendido.2024.243399.

Most read articles by the same author(s)

1 2 3 > >>