Secure Measurement Instruments Based on Trusted Execution Environments
Abstract
We present an ongoing work that addresses a secure architecture for distributed measurement systems. In this paper, we explain how the sensing phase operates, which involves digital signatures in a trusted execution environment to ensure the authenticity of sensors in these systems. We evaluated the execution time of digital signatures for different key sizes, based on RSA. The time required for key generation and signing was 1 second for 1024 bits, 4 seconds for 2048 bits, and 45 seconds for 4096 bits. The next steps involve using lighter cryptographic algorithms and improving the existing algorithm.References
Carnı̀, D., Grimaldi, D., Sciammarella, P. F., Lamonaca, F., and Martirano, L. (2017). Towards a unified approach for Distributed Measurement System Technologies. IEEE.
Druzhinin, Y. and Sokolov, V. (2017). Features of data collection at strict schedule in distributed measurement system with ring structure. In 2017 Tenth International Conference Management of Large-Scale System Development (MLSD), pages 1–5.
Filho, B. A. R. and Gonçalves, R. F. (2016). Measuring the economic impact of metrological frauds in trade metrology using an input-output model. IFIP Advances in Information and Communication Technology, pages 624–632.
Jr., W. S. M., Bessani, A., Neves, N., Santin, A. O., and Carmo, L. F. C. (2019). Using blockchains to implement distributed measuring systems. IEEE Transactions on Instrumentation and Measurement, 68:1503–1514.
Lamonaca, F., Carnı̀, D., Grimaldi, D., and Sciammarella, P. F. (2017). Mobile object to speed up the synchronization of iot network. pages 1–6.
Lombardo, L. (2022). Distributed measurement systems: Advantages and challenges of wireless sensor networks. IEEE Instrumentation Measurement Magazine, 25:21–28.
Madeira, F. L., Canedo, E. D., Gondim, J. J. C., Caetano, M. F., and Veneziano, W. H. (2021). Aplicação prática de criptografia de curvas elípticas (ecc). Instituto de Ciências Exatas Departamento de Ciência da Computação, pages 1–59.
Martins, E. V. A., Machado, E. G., Gomes, R. T. B., and Melo, W. S. (2023). Blockchain-based architecture to enhance security in distributed measurement systems. pages 1–4.
Rizzi, M., Ferrari, P., Flammini, A., and Sisinni, E. (2017). Evaluation of the iot lorawan solution for distributed measurement applications. IEEE Transactions on Instrumentation and Measurement, 66:3340–3349.
Rytel, M., Felkner, A., and Janiszewski, M. (2020). Towards a safer internet of things—a survey of iot vulnerability data sources. Sensors (Switzerland), 20:1–26.
Santis, L. D., Paciello, V., and Pietrosanto, A. (2020). Blockchain-based infrastructure to enable trust in iot environment. I2MTC 2020 - International Instrumentation and Measurement Technology Conference, Proceedings, pages 1–6.
Snehi, M. and Bhandari, A. (2021). Vulnerability retrospection of security solutions for software-defined cyber-physical system against ddos and iot-ddos attacks.
TrustedFirmware (2024). Op-tee documentation.
Valadares, D. C. G., Will, N. C., Caminha, J., Perkusich, M. B., Perkusich, A., and Gorgonio, K. C. (2021). Systematic literature review on the use of trusted execution environments to protect cloud/fog-based internet of things applications. IEEE Access, 9:80953–80969.
Wieczorowski, M. and Trojanowska, J. (2023). Towards metrology 4.0 in dimensional measurements. Journal of Machine Engineering, 23.
Wiesner, A. and Kovácsházy, T. (2022). Distributed measurement system for performance evaluation of embedded clock synchronization solutions. In 2022 23rd International Carpathian Control Conference (ICCC), pages 293–298.
Druzhinin, Y. and Sokolov, V. (2017). Features of data collection at strict schedule in distributed measurement system with ring structure. In 2017 Tenth International Conference Management of Large-Scale System Development (MLSD), pages 1–5.
Filho, B. A. R. and Gonçalves, R. F. (2016). Measuring the economic impact of metrological frauds in trade metrology using an input-output model. IFIP Advances in Information and Communication Technology, pages 624–632.
Jr., W. S. M., Bessani, A., Neves, N., Santin, A. O., and Carmo, L. F. C. (2019). Using blockchains to implement distributed measuring systems. IEEE Transactions on Instrumentation and Measurement, 68:1503–1514.
Lamonaca, F., Carnı̀, D., Grimaldi, D., and Sciammarella, P. F. (2017). Mobile object to speed up the synchronization of iot network. pages 1–6.
Lombardo, L. (2022). Distributed measurement systems: Advantages and challenges of wireless sensor networks. IEEE Instrumentation Measurement Magazine, 25:21–28.
Madeira, F. L., Canedo, E. D., Gondim, J. J. C., Caetano, M. F., and Veneziano, W. H. (2021). Aplicação prática de criptografia de curvas elípticas (ecc). Instituto de Ciências Exatas Departamento de Ciência da Computação, pages 1–59.
Martins, E. V. A., Machado, E. G., Gomes, R. T. B., and Melo, W. S. (2023). Blockchain-based architecture to enhance security in distributed measurement systems. pages 1–4.
Rizzi, M., Ferrari, P., Flammini, A., and Sisinni, E. (2017). Evaluation of the iot lorawan solution for distributed measurement applications. IEEE Transactions on Instrumentation and Measurement, 66:3340–3349.
Rytel, M., Felkner, A., and Janiszewski, M. (2020). Towards a safer internet of things—a survey of iot vulnerability data sources. Sensors (Switzerland), 20:1–26.
Santis, L. D., Paciello, V., and Pietrosanto, A. (2020). Blockchain-based infrastructure to enable trust in iot environment. I2MTC 2020 - International Instrumentation and Measurement Technology Conference, Proceedings, pages 1–6.
Snehi, M. and Bhandari, A. (2021). Vulnerability retrospection of security solutions for software-defined cyber-physical system against ddos and iot-ddos attacks.
TrustedFirmware (2024). Op-tee documentation.
Valadares, D. C. G., Will, N. C., Caminha, J., Perkusich, M. B., Perkusich, A., and Gorgonio, K. C. (2021). Systematic literature review on the use of trusted execution environments to protect cloud/fog-based internet of things applications. IEEE Access, 9:80953–80969.
Wieczorowski, M. and Trojanowska, J. (2023). Towards metrology 4.0 in dimensional measurements. Journal of Machine Engineering, 23.
Wiesner, A. and Kovácsházy, T. (2022). Distributed measurement system for performance evaluation of embedded clock synchronization solutions. In 2022 23rd International Carpathian Control Conference (ICCC), pages 293–298.
Published
2024-09-16
How to Cite
MARTINS, Eduardo V. A.; MACHADO, Eduardo G.; MARTINS, Gustavo de J.; MELO JR., Wilson de S..
Secure Measurement Instruments Based on Trusted Execution Environments. In: WORKSHOP ON SCIENTIFIC INITIATION AND UNDERGRADUATE ONGOING WORKS - BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 24. , 2024, São José dos Campos/SP.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 383-389.
DOI: https://doi.org/10.5753/sbseg_estendido.2024.243374.
