Towards Automated Detection of Rheumatic Heart Disease Using Classical Computer Vision Techniques
Resumo
Acute Rheumatic Fever (ARF) and its primary sequela, Chronic Rheumatic Heart Disease (RHD), remain a significant public health problem, particularly in developing countries. Early diagnosis of RHD, based on echocardiographic criteria such as anterior mitral leaflet (AML) thickening, is crucial for preventing disease progression. However, manual assessment of these parameters is subjective, time-consuming, and limited by the inherently noisy quality of echocardiography images. This study proposes and validates the tip-to-base thickness ratio as a quantitative biomarker, derived from a semi-automated, interpretable pipeline for assessing AML thickening. The methodology encompasses leaflet segmentation through Otsu’s thresholding and morphological operations, followed by the extraction of its medial axis and division into anatomically relevant segments (base, middle, and tip). Validating on a dataset of 80 pediatric echocardiograms (17 ARF, 63 controls), our results indicate that the proposed tip-to-base thickness ratio was significantly higher in patients with ARF (p = 0.03), yielding an Area Under the Curve (AUC) of 0.67 for disease classification. By providing a fully transparent and reproducible measurement, this work demonstrates the feasibility of using classic computational methods to create objective tools for RHD screening, highlighting the value of interpretable classical methods for clinical decision support in RHD screening.Referências
G. A. Roth, C. Johnson, A. Abajobir, F. Abd-Allah, S. F. Abera, G. Abyu, M. Ahmed, B. Aksut, T. Alam, K. Alam, and et al., “Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015,” Journal of the American College of Cardiology, vol. 70, no. 1, pp. 1–25, 2017.
R. H. Webb, C. Grant, and A. Harnden, “Acute rheumatic fever,” BMJ, vol. 351, p. h3443, 2015.
M. T. B. C. Leal, L. S. A. Passos, F. V. Guarçoni, J. M. d. S. Aguiar, R. B. R. d. Silva, T. M. N. d. Paula, R. F. d. Santos, M. C. L. Nassif, N. F. Gomes, T. C. Tan et al., “Rheumatic heart disease in the modern era: recent developments and current challenges,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 52, no. 00, p. e20180041, 2019.
B. L. Silva, A. C. C. de Carvalho, A. V. S. Santos, V. B. P. Santos, A. C. O. Silva, A. P. S. Brandão, and B. E. X. de Albuquerque, “Internações e Óbitos por doença reumática do coração: Tendências epidemiológicas e impacto na saúde pública,” Brazilian Journal of Innovation in Health Science, vol. 4, no. 1, pp. 1–9, 2024.
C. M. Otto, R. A. Nishimura, R. O. Bonow, B. A. Carabello, J. P. Erwin, F. Gentile, H. Jneid, E. V. Krieger, M. Mack, C. McLeod, P. T. O’Gara, V. H. Rigolin, T. M. Sundt, A. Thompson, and C. Toly, “2020 acc/aha guideline for the management of patients with valvular heart disease: A report of the american college of cardiology/american heart association joint committee on clinical practice guidelines,” Journal of the American College of Cardiology, vol. 77, no. 4, pp. e25–e197, 2021.
R. Saxena, S. Mishra, N. Bhardwaj, R. Bansal, and R. Gupta, “The echocardiographic diagnosis of rheumatic heart disease: A comprehensive review,” Journal of the American College of Cardiology: Asia, vol. 4, no. 4, pp. 681–683, 2024.
S. Seitler, M. Zuhair, A. Shamsi, J. J. Bray, A. Wojtaszewska, A. Siddiqui, M. Ahmad, J. Fairley, R. Providencia, and A. Akhtar, “Cardiac imaging in rheumatic heart disease and future developments,” European Heart Journal Open, vol. 3, no. 2, p. oeac060, 2023.
G. F. Cacao, D. Du, and N. Nair, “Unsupervised image segmentation on 2d echocardiogram,” Algorithms, vol. 17, no. 11, p. 515, 2024.
M. Ploutz, J. C. Lu, J. Scheel, C. Webb, G. J. Ensing, T. Aliku, P. Lwabi, C. Sable, and A. Beaton, “Handheld echocardiographic screening for rheumatic heart disease by non-experts,” Heart, vol. 102, no. 1, pp. 35–39, 2016.
N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.
J. S. Suri, K. Liu, S. Singh, S. N. Laxminarayan, X. Zeng, and L. Reden, “Shape recovery algorithms using level sets in 2-d/3-d medical imagery: a state-of-the-art review,” IEEE Transactions on information technology in biomedicine, vol. 6, no. 1, pp. 8–28, 2002.
A. Ghorbani, D. Ouyang, A. Abid, B. He, J. H. Chen, R. A. Harrington, D. H. Liang, E. A. Ashley, and J. Y. Zou, “Deep learning interpretation of echocardiograms,” NPJ digital medicine, vol. 3, no. 1, pp. 1–8, 2020.
C. Chen, C. Qin, H. Qiu, G. Tarroni, J. Duan, W. Bai, and D. Rueckert, “Deep learning for cardiac image segmentation: A review,” Frontiers in Cardiovascular Medicine, vol. 7, p. 25, 2020.
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer, 2015, pp. 234–241.
B. S. Andreassen, F. Veronesi, O. Gerard, A. H. S. Solberg, and E. Samset, “Mitral annulus segmentation using deep learning in 3d transesophageal echocardiography,” IEEE journal of biomedical and health informatics, vol. 24, no. 4, pp. 994–1003, 2019.
K. Brown, P. Roshanitabrizi, J. Rwebembera, E. Okello, A. Beaton, M. G. Linguraru, and C. A. Sable, “Using artificial intelligence for rheumatic heart disease detection by echocardiography: Focus on mitral regurgitation,” Journal of the American Heart Association, vol. 13, no. 2, p. e031257, 2024.
M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International journal of computer vision, vol. 1, no. 4, pp. 321–331, 1988.
P. Kulkarni and D. Madathil, “Echocardiography image segmentation using semi-automatic numerical optimisation method based on wavelet decomposition thresholding,” International Journal of Imaging Systems and Technology, 2021.
V. V. Danilov, I. P. Skirnevskiy, O. M. Gerget, E. E. Shelomentcev, D. Y. Kolpashchikov, and N. V. Vasilyev, “Efficient workflow for automatic segmentation of the right heart based on 2d echocardiography,” The International Journal of Cardiovascular Imaging, vol. 34, pp. 1339–1352, 2018.
G. d. F. Barros Filho, A. L. C. de Almeida, I. Solha, E. F. de Medeiros, A. d. S. Felix, J. C. de Lima Júnior, M. D. T. de Melo, and M. C. Rodrigues, “Medição automática de valva mitral a partir de ecocardiograma utilizando processamento digital de imagens,” Arquivos Brasileiros de Cardiologia: Imagem Cardiovascular, vol. 36, p. e371, 2023.
M. H. Gewitz, R. S. Baltimore, L. Y. Tani, C. A. Sable, S. T. Shulman, J. Carapetis, B. Remenyi, K. A. Taubert, A. F. Bolger, L. Beerman et al., “Revision of the jones criteria for the diagnosis of acute rheumatic fever in the era of doppler echocardiography: a scientific statement from the american heart association,” Circulation, vol. 131, no. 20, pp. 1806–1818, 2015.
G. Bradski, “The opencv library,” Dr. Dobb’s Journal of Software Tools, vol. 25, no. 11, pp. 120–122, 2000.
S. van der Walt and et al., “scikit-image: image processing in python,” PeerJ, vol. 2, p. e453, 2014.
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. Pearson, 2018.
L. S. A. Passos, M. C. P. Nunes, and E. Aikawa, “Rheumatic heart valve disease pathophysiology and underlying mechanisms,” Frontiers in Cardiovascular Medicine, vol. 7, 2021.
R. H. Webb, C. Grant, and A. Harnden, “Acute rheumatic fever,” BMJ, vol. 351, p. h3443, 2015.
M. T. B. C. Leal, L. S. A. Passos, F. V. Guarçoni, J. M. d. S. Aguiar, R. B. R. d. Silva, T. M. N. d. Paula, R. F. d. Santos, M. C. L. Nassif, N. F. Gomes, T. C. Tan et al., “Rheumatic heart disease in the modern era: recent developments and current challenges,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 52, no. 00, p. e20180041, 2019.
B. L. Silva, A. C. C. de Carvalho, A. V. S. Santos, V. B. P. Santos, A. C. O. Silva, A. P. S. Brandão, and B. E. X. de Albuquerque, “Internações e Óbitos por doença reumática do coração: Tendências epidemiológicas e impacto na saúde pública,” Brazilian Journal of Innovation in Health Science, vol. 4, no. 1, pp. 1–9, 2024.
C. M. Otto, R. A. Nishimura, R. O. Bonow, B. A. Carabello, J. P. Erwin, F. Gentile, H. Jneid, E. V. Krieger, M. Mack, C. McLeod, P. T. O’Gara, V. H. Rigolin, T. M. Sundt, A. Thompson, and C. Toly, “2020 acc/aha guideline for the management of patients with valvular heart disease: A report of the american college of cardiology/american heart association joint committee on clinical practice guidelines,” Journal of the American College of Cardiology, vol. 77, no. 4, pp. e25–e197, 2021.
R. Saxena, S. Mishra, N. Bhardwaj, R. Bansal, and R. Gupta, “The echocardiographic diagnosis of rheumatic heart disease: A comprehensive review,” Journal of the American College of Cardiology: Asia, vol. 4, no. 4, pp. 681–683, 2024.
S. Seitler, M. Zuhair, A. Shamsi, J. J. Bray, A. Wojtaszewska, A. Siddiqui, M. Ahmad, J. Fairley, R. Providencia, and A. Akhtar, “Cardiac imaging in rheumatic heart disease and future developments,” European Heart Journal Open, vol. 3, no. 2, p. oeac060, 2023.
G. F. Cacao, D. Du, and N. Nair, “Unsupervised image segmentation on 2d echocardiogram,” Algorithms, vol. 17, no. 11, p. 515, 2024.
M. Ploutz, J. C. Lu, J. Scheel, C. Webb, G. J. Ensing, T. Aliku, P. Lwabi, C. Sable, and A. Beaton, “Handheld echocardiographic screening for rheumatic heart disease by non-experts,” Heart, vol. 102, no. 1, pp. 35–39, 2016.
N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017.
J. S. Suri, K. Liu, S. Singh, S. N. Laxminarayan, X. Zeng, and L. Reden, “Shape recovery algorithms using level sets in 2-d/3-d medical imagery: a state-of-the-art review,” IEEE Transactions on information technology in biomedicine, vol. 6, no. 1, pp. 8–28, 2002.
A. Ghorbani, D. Ouyang, A. Abid, B. He, J. H. Chen, R. A. Harrington, D. H. Liang, E. A. Ashley, and J. Y. Zou, “Deep learning interpretation of echocardiograms,” NPJ digital medicine, vol. 3, no. 1, pp. 1–8, 2020.
C. Chen, C. Qin, H. Qiu, G. Tarroni, J. Duan, W. Bai, and D. Rueckert, “Deep learning for cardiac image segmentation: A review,” Frontiers in Cardiovascular Medicine, vol. 7, p. 25, 2020.
O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer, 2015, pp. 234–241.
B. S. Andreassen, F. Veronesi, O. Gerard, A. H. S. Solberg, and E. Samset, “Mitral annulus segmentation using deep learning in 3d transesophageal echocardiography,” IEEE journal of biomedical and health informatics, vol. 24, no. 4, pp. 994–1003, 2019.
K. Brown, P. Roshanitabrizi, J. Rwebembera, E. Okello, A. Beaton, M. G. Linguraru, and C. A. Sable, “Using artificial intelligence for rheumatic heart disease detection by echocardiography: Focus on mitral regurgitation,” Journal of the American Heart Association, vol. 13, no. 2, p. e031257, 2024.
M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International journal of computer vision, vol. 1, no. 4, pp. 321–331, 1988.
P. Kulkarni and D. Madathil, “Echocardiography image segmentation using semi-automatic numerical optimisation method based on wavelet decomposition thresholding,” International Journal of Imaging Systems and Technology, 2021.
V. V. Danilov, I. P. Skirnevskiy, O. M. Gerget, E. E. Shelomentcev, D. Y. Kolpashchikov, and N. V. Vasilyev, “Efficient workflow for automatic segmentation of the right heart based on 2d echocardiography,” The International Journal of Cardiovascular Imaging, vol. 34, pp. 1339–1352, 2018.
G. d. F. Barros Filho, A. L. C. de Almeida, I. Solha, E. F. de Medeiros, A. d. S. Felix, J. C. de Lima Júnior, M. D. T. de Melo, and M. C. Rodrigues, “Medição automática de valva mitral a partir de ecocardiograma utilizando processamento digital de imagens,” Arquivos Brasileiros de Cardiologia: Imagem Cardiovascular, vol. 36, p. e371, 2023.
M. H. Gewitz, R. S. Baltimore, L. Y. Tani, C. A. Sable, S. T. Shulman, J. Carapetis, B. Remenyi, K. A. Taubert, A. F. Bolger, L. Beerman et al., “Revision of the jones criteria for the diagnosis of acute rheumatic fever in the era of doppler echocardiography: a scientific statement from the american heart association,” Circulation, vol. 131, no. 20, pp. 1806–1818, 2015.
G. Bradski, “The opencv library,” Dr. Dobb’s Journal of Software Tools, vol. 25, no. 11, pp. 120–122, 2000.
S. van der Walt and et al., “scikit-image: image processing in python,” PeerJ, vol. 2, p. e453, 2014.
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 4th ed. Pearson, 2018.
L. S. A. Passos, M. C. P. Nunes, and E. Aikawa, “Rheumatic heart valve disease pathophysiology and underlying mechanisms,” Frontiers in Cardiovascular Medicine, vol. 7, 2021.
Publicado
30/09/2025
Como Citar
SILVA, Naila Suele Mascarenhas; RODRIGUES, Carlos Alberto; PINTO, Airandes de Sousa; OLIVEIRA, Bráulio Muzzi Ribeiro de; MENDOZA, Renata Fonseca; NUNES, Maria do Carmo Pereira.
Towards Automated Detection of Rheumatic Heart Disease Using Classical Computer Vision Techniques. In: WORKSHOP DE TRABALHOS EM ANDAMENTO - CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 38. , 2025, Salvador/BA.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 85-90.
