Intersection-based Spatial Annotation of Trajectories with Linked Data

  • Tales Nogueira UFC
  • Hervé Martin Univ. Grenoble Alpes
  • Rossana Andrade UFC

Resumo


As cidades inteligentes são caracterizadas pela oferta de novos serviços através das Tecnologias de Informação e Comunicação. No entanto, é importante coletar dados dos cidadãos para descobrir novos conhecimentos sobre certos aspectos de uma cidade. Um exemplo de um domínio rico para coletar dados em uma cidade inteligente é explorar o uso de aplicativos de condicionamento físico móvel. Os usuários geralmente registram atividades ao ar livre na forma de trajetórias, que podem ser posteriormente adquiridas para análise posterior. Neste trabalho, aproveitamos as tecnologias da Web Semântica para propor um algoritmo de anotação que segmenta trajetórias de acordo com seu contexto espacial. Demonstramos como o método funciona e o impacto das ontologias relacionadas ao OpenStreetMap no processo de anotação.

Referências

Andrienko, Natalia, Gennady Andrienko, Nikos Pelekis, and Stefano Spaccapietra (2008). “Basic Concepts of Movement Data”. In: Mobility, Data Mining and Privacy. Ed. by Fosca Giannotti and Dino Pedreschi. Springer Berlin Heidelberg. Chap. 2,pp. 15–38. ISBN: 978-3-540-75176-2. DOI: 10.1007/978-3-540-75177-9{\_}2.

Ballatore, Andrea, Michela Bertolotto, and David C.Wilson (2012). “Geographic Knowledge Extraction and Semantic Similarity in OpenStreetMap”. In: Knowledge and Information Systems 37.1, pp. 61–81. DOI: http://dx.doi.org/10.1007/s10115-012-0571-0.

Bennett, Jonathan (2010). OpenStreetMap. Birmingham, UK: Packt Publishing, p. 252. ISBN: 9781847197504.

Cocchia, Annalisa (2014). “Smart and Digital City: A Systematic Literature Review”. In: Smart City: How to Create Public and Economic Value with High Technology in Urban Space. Ed. by Renata Paola Dameri and Camille Rosenthal-Sabroux. Cham: Springer International Publishing, pp. 13–43. ISBN: 978-3-319-06160-3.DOI: 10 . 1007 / 978 - 3 - 319 - 06160 - 3 _ 2. URL: http : / / link .springer.com/10.1007/978-3-319-06160-3%7B%5C_%7D2.

Dodge, Somayeh, Robert Weibel, and Anna-Katharina Lautenschütz (2008). “Towards a taxonomy of movement patterns”. In: Information Visualization 7.3-4, pp. 240–252. ISSN: 1473-8716. DOI: 10.1057/palgrave.ivs.9500182. URL:http://ivi.sagepub.com/lookup/doi/10.1057/palgrave.ivs.9500182.

Furletti, Barbara, Paolo Cintia, Chiara Renso, and Laura Spinsanti (2013). “Inferring human activities from GPS tracks”. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing - UrbComp ’13. New York, New York, USA: ACM Press, p. 1. ISBN: 9781450323314. DOI: 10.1145/2505821.2505830. URL: http : / / dl . acm . org / citation . cfm ? doid =2505821.2505830.

Nogueira, Tales P., Reinaldo B. Braga, Carina T. de Oliveira, and Hervé Martin (Feb. 2018). “FrameSTEP: A framework for annotating semantic trajectories based on episodes”. In: Expert Systems with Applications 92, pp. 533–545. ISSN: 09574174. DOI: 10.1016/j.eswa.2017.10.004. URL: http://linkinghub.elsevier.com/retrieve/pii/S0957417417306796.

Ragone, Azzurra, Tommaso Di Noia, Vito Walter Anelli, Andrea Calì, and Matteo Palmonari (2016). “Exposing Open Street Map in the Linked Data cloud”. In: Proceedings of the 29th International Conference on Industrial, Engineering & other Applications of Applied Intelligent Systems. URL: http://www-ictserv.poliba.it/sisinflab/publication%20s/2016/RDACP16.

Spaccapietra, Stefano, Christine Parent, and Laura Spinsanti (2013). “Trajectories and Their Representations”. In: Mobility Data: Modeling, Management, and Understanding. Ed. by Chiara Renso, Stefano Spaccapietra, and Esteban Zimányi. Cambridge University Press, pp. 3–22. ISBN: 9781139128926.

Stadler, Claus, Jens Lehmann, Konrad Höffner, and Sören Auer (2012). “LinkedGeoData: A Core for aWeb of Spatial Open Data”. In: Semantic Web 3.4, pp. 333–354. DOI:10.3233/SW- 2011- 0052. URL: http://iospress.metapress.com/content/141W054666871326.

Yan, Zhixian, Dipanjan Chakraborty, Christine Parent, Stefano Spaccapietra, and Karl Aberer (2011). “SeMiTri: A Framework for Semantic Annotation of Heterogeneous Trajectories”. In: Proceedings of the 14th International Conference on Extending Database Technology - EDBT/ICDT ’11. New York, New York, USA: ACM Press, p. 259. ISBN: 9781450305280. DOI: 10 . 1145 / 1951365 . 1951398. URL: http://portal.acm.org/citation.cfm?doid=1951365.1951398.

— (2012). “Semantic Trajectories: Mobility Data Computation and Annotation”. In: ACM Transactions on Intelligent Systems and Technology (TIST) 4.2, 39:1–39:38. DOI: 10.1145/2483669.2483682.

Zheng, Yu (2015). “Trajectory Data Mining: An Overview”. In: ACM Trans. On Intelligent Systems and Technology 6.3. DOI: 10.1145/2743025.
Publicado
19/07/2019
NOGUEIRA, Tales; MARTIN, Hervé; ANDRADE , Rossana. Intersection-based Spatial Annotation of Trajectories with Linked Data. In: WORKSHOP BRASILEIRO DE CIDADES INTELIGENTES (WBCI), 2. , 2019, Belém. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2019 . DOI: https://doi.org/10.5753/wbci.2019.6750.