Forecasting potable water demand in smart cities using the PROPHET time series modeling algorithm

  • Tobias Barreto UFF / Grupo Águas do Brasil
  • Flavia Bernardini UFF
  • Daniel de Oliveira UFF

Abstract


Smart Cities (SC) aim at improving services provision through the implementation of new technologies in cities planning, development, operation, and governance. Indicators associated to Basic Sanitation, such as sewage volume index, average per capita water consumption and losses in water distribution, may compose one of the dimensions used for evaluating SCs. In this context, to improve citizens life quality, forecasting the volume of treated water to be distributed is of great importance in cities management. The goal of this paper is to carry out an empirical evaluation of the statistical modeling algorithm PROPHET for time to forecast the volume of water to be distributed in Niterói, RJ. Real data was collected and processed from an organization based in Niterói, RJ.

References

Abreu, João Paulo Maciel Marchiori, F. F. (2023). Ferramentas de avaliação de desempenho de cidades inteligentes: uma análise da norma iso 37122:2019. PARC Pesquisa em Arquitetura e Construção, 14(00).

Anthopoulos, L. (2017). Smart utopia vs smart reality: Learning by experience from 10 smart city cases. Cities, 63:128–148.

Banni, M., Rosseti, I., and de Oliveira, D. (2022). Hurricane: um serviçoo para gerência de dados de aplicaçõeses de cidades inteligentes. In Anais do XXXVII Simpósio Brasileiro de Bancos de Dados, pages 151–163. SBC.

Camara, L. R. A., da Silva, D. D. S., Sales, L. L. N., Silva, D. W. S., and Pinheiro, E. M. (2019). Qualidade de vida e percepção ambiental dos moradores de comunidades rurais em são luís (ma). Revista Brasileira de Educação Ambiental (RevBEA), 14(1):263–274.

Chen, Tianqi, G. C. (2016). Xgboost: a scalable tree boosting system proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining; 2016: 785-794. ACM, New York, NY.

Cruz, M. M., Bernardini, F. C., Nunes, V. T., and Bastos, C. A. (2022). Uma analise empirica dos planejamentos estratégicos das capitais brasileiras com foco na construção de cidades inteligentes. In Anais do X Workshop de Computação Aplicada em Governo Eletrônico, pages 157–167. SBC.

de Assis Cunha, I. B., Baracho, R. M. A., et al. (2019). Dados abertos e suas aplicações em cidades inteligentes. Liinc em Revista, 15(2).

Giffinger, R., Fertner, C., Kramar, H., Meijers, E., et al. (2007). City-ranking of european medium-sized cities. Cent. Reg. Sci. Vienna UT, 9(1):1–12.

Kimball, R. and Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley, Indianapolis, IN, 3 edition.

Liu, C., Liu, Z., Yuan, J., Wang, D., and Liu, X. (2024). Urban water demand prediction based on attention mechanism graph convolutional network-long short-term memory. Water, 16(6):831.

Sajjanshetty, A. S., Jayanth, V., Mohan, R., Pahari, S., and Deepti, C. (2023). Estimation of community water consumption using multivariate ensemble approach. In 2023 IEEE International Conference on Contemporary Computing and Communications (InC4), volume 1, pages 1–5. IEEE.

Schwetschenau, S. E., VanBriesen, J. M., and Cohon, J. L. (2019). Integrated multiobjective optimization and simulation model applied to drinking water treatment placement in the context of existing infrastructure. Journal of Water Resources Planning and Management, 145(11):04019048.

Taylor, S. J. and Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1):37–45.

Zhang, G. P. (2003). Time series forecasting using a hybrid arima and neural network model. Neurocomputing, 50:159–175.
Published
2024-07-21
BARRETO, Tobias; BERNARDINI, Flavia; OLIVEIRA, Daniel de. Forecasting potable water demand in smart cities using the PROPHET time series modeling algorithm. In: LATIN AMERICAN SYMPOSIUM ON DIGITAL GOVERNMENT (LASDIGOV), 12. , 2024, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 157-168. ISSN 2763-8723. DOI: https://doi.org/10.5753/wcge.2024.3092.

Most read articles by the same author(s)

<< < 1 2 3 > >>