Global Media Transmission Protocol (GMTP)
Resumo
Os sistemas para transmissão de mídias ao vivo na Internet executam diversas funções que foram implementadas para suprir a ausência de serviços de rede para este fim. Esta prática dificulta a interoperabilidade desse tipo de sistema e, consequentemente, no consumo exacerbado dos recursos de rede, impactando nas métricas que determinam a satisfação do usuário ao assistir a um evento ao vivo. Neste trabalho, introduz-se o Global Media Transmission Protocol (GMTP), um protocolo de rede cross-layer para distribuição de mídias ao vivo pelo uso de sockets P2P (transporte) e formação de parcerias entre roteadores (rede), gerenciadas pelos servidores da mídia, que orquestram as parcerias com base na capacidade de cada canal de transmissão formado pelos roteadores para repassar os datagramas multimídia aos sistemas finais.
Referências
Nandita Dukkipati. Rate Control Protocol (RCP): Congestion Control to Make Flows Complete Quickly. PhD thesis, Stanford University, Stanford, CA, USA, 2008.
Stenio Fernandes, Judith Kelner, and Djamel Sadok. An Adaptive-Predictive Architecture for Video Streaming Servers. Journal of Network and Computer Applications, 34(5): 1683–1694, 9 2011.
Rosario G. Garroppo, Stefano Giordano, Stella Spagna, Saverio Niccolini, and Jan Seedorf. Topology Control Strategies on P2P Live Video Streaming Service with Peer Churning. Computer Communication, 35(6):759–770, 3 2012.
Nianwang Liu, Zheng Wen, K.L. Yeung, and Zhibin Lei. Request-peer Selection for Load-balancing in P2P Live Streaming Systems. In Wireless Communications and Networking Conference (WCNC), 2012 IEEE, 4 2012.
Yaning Liu, Hongbo Wang, Yu Lin, Shiduan Cheng, and G. Simon. Friendly P2P: Application-Level Congestion Control for Peer-to-Peer Applications. In IEEE Global Telecommunications Conference, 2008, 12 2008.
Melika Meskovic, Himzo Bajric, and Mladen Kos. Content Delivery Architectures for Live Video Streaming: Hybrid CDN-P2P as the Best Option. In The Fifth International Conference on Communication Theory, Reliability, and Quality of Service, 2012.
Y. Sakata, K. Takayama, R. Endo, and H. Shigeno. A Chunk Scheduling Based on Chunk Diffusion Ratio on P2P Live Streaming. In NBiS, 2012.
S.MY Seyyedi and B. Akbari. Hybrid CDN-P2P Architectures for Live Video streaming: Comparative Study of Connected and Unconnected Meshes. In CNDS 2011, 2 2011.
M. Shibuya, Y. Hei, and T. Ogishi. ISP-Friendly Peer Selection Mechanism with ALTOlike Server. In APNOMS, 2011.
Kyuyong Shin, D.S. Reeves, and Injong Rhee. Treat-before-trick: Free-riding Prevention for BitTorrent-like Peer-to-Peer Networks. In IPDPS, 2009.
Thiago Silva, Jussara M. Almeida, and Dorgival Guedes. Live Streaming of User Generated Videos: Workload Characterization and Content Delivery Architectures. Computer Network, 55(18):4055–4068, 12 2011.
Truong Cong Thang, Hung T. Le, Hoc X. Nguyen, Anh T. Pham, Jung Won Kang, and Yong Man Ro. Adaptive Video Streaming over HTTP with Dynamic Resource Estimation. Journal of Communications and Networks, 15(6):635–644, 12 2013.
Alex B. Vieira and Sergio V. A. Campos. Transmiss˜ao de Mídia contínua ao Vivo em P2P: Modelagem, Caracterização e Implementação de Mecanismo de Resiliência a Ataques. PhD thesis, Universidade Federal de Minas Gerais UFMG, 3 2010.
Tzu-Ming Wang, Wei-Tsong Lee, Tin-Yu Wu, Hsin-Wen Wei, and Yu-San Lin. New P2P Sharing Incentive Mechanism Based on Social Network and Game Theory. In WAINA Workshop, 2012.
J. Widmer and M. Handley. TCP-Friendly Multicast Congestion Control (TFMCC): Protocol Specification, 8 2006. IETF RFC 4654.