Um Mapeamento Sistemático da Literatura sobre Pensamento Computacional na Perspectiva dos Fundamentos Teóricos de Aprendizagem

Resumo


Há uma oferta crescente de formação em pensamento computacional (PC) para estudantes da educação básica devido ao potencial que o domínio de competências em PC traz para a formação de estudantes e profissionais do Século XXI. Conforme o ensino do PC se dissemina pelo mundo, é crescente a preocupação de professores e pesquisadores da área da educação em computação com a eficácia do processo de ensino e aprendizagem dos estudantes. Entretanto, neste contexto, muitas abordagens propostas costumam se preocupar mais com as tecnologias e linguagens do que com os fundamentos teóricos de aprendizagem por trás das abordagens propostas. Sendo assim, faz-se necessária uma visão sistêmica de como os referidos fundamentos têm impactado no ato de ensinar e aprender PC. Assim, este trabalho objetivou realizar um mapeamento sistemático da literatura (MSL) das evidências sobre a utilização destes fundamentos no contexto da formação em PC na educação básica, revelando uma carência neste sentido.
Palavras-chave: Pensamento Computacional, Educação Básica, Fundamentos Teóricos de Aprendizagem

Referências

David Paul Ausubel. 1973. Algunos aspectos psicológicos de la estructura del conocimiento. Elam, S.(Comp.) La educación y la estructura del conocimiento. Investigaciones sobre el proceso de aprendizaje y la naturaleza de las disciplinas que integran el currículum. Ed. El Ateneo. Buenos Aires. Págs 211, 239.

David Paul Ausubel, Joseph D Novak, and Helen Hanesian. 1980. Psicologia educacional. Interamericana.

J Biggs and K Collis. 1982. Origin and description of the SOLO taxonomy. Evaluating the quality of learning: The SOLO Taxonomy. New York: Academic Press Inc, 17–30.

Paulo Blikstein. 2008. O pensamento computacional e a reinvenção do computador na educação. Education & Courses.

Benjamin Samuel Bloom, Committee of College, and University Examiners. 1964. Taxonomy of educational objectives. Vol. 2. Longmans, Green New York.

Adriana Bordini, Christiano Martino Otero Avila, Yuri Weisshahn, Mônica Marques da Cunha, Simone André da Costa Cavalheiro, Luciana Foss, Marilton Sanchotene Aguiar, and Renata Hax Sander Reiser. 2016. Computaçao na educaçao básica no brasil: o estado da arte. Revista de Informática Teórica e Aplicada 23, 2, 210–238.

Karen Selbach Borges, Crediné Silva de Menezes, and Léa da Cruz Fagundes. 2017. The use of computational thinking in digital fabrication projects a case study from the cognitive perspective. In 2017 IEEE Frontiers in Education Conference (FIE). IEEE, 1–6.

Christian Puhlmann Brackmann. 2017. Desenvolvimento do pensamento computacional através de atividades desplugadas na educação básica.

Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and assessing the development of computational thinking.

Deirdre Butler and Margaret Leahy. 2021. Developing preservice teachers’ understanding of computational thinking: A constructionist approach. British Journal of Educational Technology 52, 3, 1060–1077.

Joethe Carvalho, José Francisco Netto, and Thais Almeida. 2017. Revisao sistemática de literatura sobre pensamento computacional por meio de objetos de aprendizagem. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), Vol. 28. 223.

Samri Chongo, Kamisah Osman, and Nazrul Anuar Nayan. 2021. Impact of the Plugged-In and Unplugged Chemistry Computational Thinking Modules on Achievement in Chemistry. EURASIA Journal of Mathematics, Science and Technology Education 17, 4.

Jody Clarke-Midura, Joseph S Kozlowski, Jessica F Shumway, and Victor R Lee. 2021. How young children engage in and shift between reference frames when playing with coding toys. International Journal of Child-Computer Interaction 28, 100250.

Mihaly Csikszentmihalyi, Sami Abuhamdeh, and Jeanne Nakamura. 2014. Flow. In Flow and the foundations of positive psychology. Springer, 227–238.

Mihaly Czikszentmihalyi. 1990. Flow: The psychology of optimal experience. New York: Harper & Row.

Ana Liz Souto O de Araujo, Wilkerson L Andrade, and Dalton D Serey Guerrero. 2016. A systematic mapping study on assessing computational thinking abilities. In 2016 IEEE frontiers in education conference (FIE). IEEE, 1–9.

Belkis Díaz-Lauzurica and David Moreno-Salinas. 2019. Computational thinking and robotics: A teaching experience in compulsory secondary education with students with high degree of apathy and demotivation. Sustainability 11, 18, 5109.

Russell Feldhausen, Joshua Levi Weese, and Nathan H Bean. 2018. Increasing student self-efficacy in computational thinking via STEM outreach programs. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education. 302–307.

Deborah A Fields, Lisa Quirke, Janell Amely, and Jason Maughan. 2016. Combining big data and thick data analyses for understanding youth learning trajectories in a summer coding camp. In Proceedings of the 47th ACM technical symposium on computing science education. 150–155.

Kurt W Fischer. 1980. A theory of cognitive development: The control and construction of hierarchies of skills. Psychological review 87, 6, 477.

Allan Fowler, Johanna Pirker, Ian Pollock, Bruno Campagnola de Paula, Maria Emilia Echeveste, and Marcos J Gómez. 2016. Understanding the benefits of game jams: Exploring the potential for engaging young learners in STEM. In Proceedings of the 2016 ITiCSE working group reports. 119–135.

Diana Franklin, Jean Salac, Zachary Crenshaw, Saranya Turimella, Zipporah Klain, Marco Anaya, and Cathy Thomas. 2020. Exploring student behavior using the TIPP&SEE learning strategy. In Proceedings of the 2020 ACM Conference on International Computing Education Research. 91–101.

Marianthi Grizioti and Chronis Kynigos. 2021. Code the mime: A 3D programmable charades game for computational thinking in MaLT2. British Journal of Educational Technology 52, 3, 1004–1023.

Shuchi Grover, Nicholas Jackiw, and Patrik Lundh. 2019. Concepts before coding: Non-programming interactives to advance learning of introductory programming concepts in middle school. Computer Science Education 29, 2-3, 106–135.

Shan Jiang and Gary KW Wong. 2022. Exploring age and gender differences of computational thinkers in primary school: A developmental perspective. Journal of Computer Assisted Learning 38, 1, 60–75.

Filiz Kalelioglu, Yasemin Gulbahar, and Volkan Kukul. 2016. A framework for computational thinking based on a systematic research review.

Avital Kesler, Tamar Shamir-Inbal, and Ina Blau. 2022. Active learning by visual programming: Pedagogical perspectives of instructivist and constructivist code teachers and their implications on actual teaching strategies and students’ programming artifacts. Journal of Educational Computing Research 60, 1, 28–55.

Max Kesselbacher and Andreas Bollin. 2019. Discriminating programming strategies in scratch: Making the difference between novice and experienced programmers. In Proceedings of the 14th Workshop in Primary and Secondary Computing Education. 1–10.

Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews in software engineering.

Lauri Malmi, Judy Sheard, Päivi Kinnunen, and Jane Sinclair. 2019. Computing education theories: what are they and how are they used?. In Proceedings of the 2019 ACM Conference on International Computing Education Research. 187–197.

Alexandres Merkouris and Konstantinos Chorianopoulos. 2018. Programming touch and full-body interaction with a remotely controlled robot in a secondary education STEM course. In Proceedings of the 22nd Pan-Hellenic Conference on Informatics. 225–229.

Maria da Graça Nicoletti Mizukami. 1986. Ensino: as abordagens do processo.

Monika Mladenović, Žana Žanko, and Andrina Granić. 2021. Mediated transfer: From text to blocks and back. International Journal of Child-Computer Interaction 29, 100279.

Ana Francisca Monteiro, Maribel Miranda-Pinto, and António José Osório. 2021. Coding as literacy in preschool: A case study. Education Sciences 11, 5, 198.

Elizabeth K Morales-Urrutia, José Miguel Ocaña, Diana Pérez-Marín, and Celeste Pizarro. 2021. Can mindfulness help Primary Education students to learn how to program with an emotional learning companion? IEEE Access 9, 6642–6660.

Marco Antonio Moreira and Neusa Teresinha Massoni. 2015. Interfaces entre teorias de aprendizagem e ensino de ciências/física.

Manargul Mukasheva and Aisara Omirzakova. 2021. Computational thinking assessment at primary school in the context of learning programming. World Journal on Educational Technology: Current Issues 13, 3, 336–353.

Cipolla Neto, Luis Silveira Menna Barreto, and Solange Castro Afeche. 1998. A formação social da mente Vygotski, LS 153.65-V631 Psicologia e Pedagogia O desenvolvimento dos processos psicológicos superiores. Psicologia 153, V631.

Rita de Araujo Neves and Magda Floriana Damiani. 2006. Vygotsky e as teorias da aprendizagem.

Oi-Lam Ng and Zhihao Cui. 2021. Examining primary students’ mathematical problem-solving in a programming context: towards computationally enhanced mathematics education. ZDM–Mathematics Education 53, 4, 847–860.

Andréia Osti. 2009. Concepções sobre desenvolvimento e aprendizagem segundo a psicogênese piagetiana. Revista de Educação 12, 13.

Seymour Papert. 1986. Constructionism: A new opportunity for elementary science education. Massachusetts Institute of Technology, Media Laboratory.

Seymour Papert. 1990. Children, computers and powerful ideas.

Seymour Papert. 1994. A máquina das crianças. Porto Alegre: Artmed 17.

Seymour Papert. 2008. Seymour. A máquina das crianças: repensando a escola na era da informática. Porto Alegre: Artmed.

Nikolaos Pellas and Efstratios Peroutseas. 2016. Gaming in Second Life via Scratch4SL: Engaging high school students in programming courses. Journal of Educational Computing Research 54, 1, 108–143.

Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Systematic mapping studies in software engineering. In 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) 12. 1–10.

Christopher Petrie. 2022. Interdisciplinary computational thinking with music and programming: a case study on algorithmic music composition with Sonic Pi. Computer Science Education 32, 2, 260–282.

Jean Piaget, Leo Apostel, Olivier Costa de Beauregard, and Jean-Toussaint Desanti. 1967. Logique et connaissance scientifique. Vol. 22. Gallimard Paris.

João Piedade, Nuno Dorotea, Ana Pedro, and João Filipe Matos. 2020. On teaching programming fundamentals and computational thinking with educational robotics: A didactic experience with pre-service teachers. Education Sciences 10, 9, 214.

Alexander Repenning and Ashok Basawapatna. 2021. Smacking Screws with Hammers: Experiencing Affordances of Block-based Programming through the Hourglass Challenge. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education. 267–273.

Wouter J Rijke, Lars Bollen, Tessa HS Eysink, and Jos LJ Tolboom. 2018. Computational thinking in primary school: An examination of abstraction and decomposition in different age groups. Informatics in education 17, 1, 77–92.

José-Manuel Sáez-López, Marcos Román-González, and Esteban Vázquez-Cano. 2016. Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Computers & Education 97, 129–141.

Jean Salac, Cathy Thomas, Chloe Butler, and Diana Franklin. 2021. Supporting Diverse Learners in K-8 Computational Thinking with TIPP&SEE.

Jean Salac, Cathy Thomas, Chloe Butler, and Diana Franklin. 2021. Understanding the Link between Computer Science Instruction and Reading & Math Performance. In Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1. 408–414.

Jean Salac, Cathy Thomas, Chloe Butler, Ashley Sanchez, and Diana Franklin. 2020. TIPP&SEE: a learning strategy to guide students through use-modify Scratch activities. In Proceedings of the 51st ACM Technical Symposium on Computer Science Education. 79–85.

Priscila SC Santos, Luis Gustavo J Araujo, and Roberto A Bittencourt. 2018. A mapping study of computational thinking and programming in brazilian k-12 education. In 2018 IEEE Frontiers in Education Conference (FIE). IEEE, 1–8.

Anika Saxena, Chung Kwan Lo, Khe Foon Hew, and Gary Ka Wai Wong. 2020. Designing unplugged and plugged activities to cultivate computational thinking: An exploratory study in early childhood education. The Asia-Pacific Education Researcher 29, 1, 55–66.

Cynthia Selby and John Woollard. 2013. Computational thinking: the developing definition.

Burrhus Frederick Skinner. 1969. Utopia as an experimental culture. Appleton-Century-Crofts.

Claudia Szabo, Nickolas Falkner, Andrew Petersen, Heather Bort, Cornelia Connolly, Kathryn Cunningham, Peter Donaldson, Arto Hellas, James Robinson, and Judy Sheard. 2019. A Periodic Table of Computing Education Learning Theories. In Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education. 269–270.

Giovanni Maria Troiano, Qinyu Chen, Ángela Vargas Alba, Gregorio Robles, Gillian Smith, Michael Cassidy, Eli Tucker-Raymond, Gillian Puttick, and Casper Harteveld. 2020. Exploring how game genre in student-designed games influences computational thinking development. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 1–17.

Nienke van Es and Johan Jeuring. 2017. Designing and comparing two scratch-based teaching approaches for students aged 10–12 years. In Proceedings of the 17th Koli Calling International Conference on Computing Education Research. 178–182.

Lev Vygotsky. 1993. Semenovich. Pensamento e linguagem. Tradução Jefferson Luiz Camargo. São Paulo: Martins Fontes.

Lev Semenovich Vygotsky et al. 2008. Pensamento e linguagem. Vol. 4. Martins Fontes São Paulo.

Claudia Werlich, Avanilde Kemczinski, and Isabela Gasparini. 2018. Pensamento Computacional no Ensino Fundamental: um mapeamento sistemático. In XXIII Congreso Internacional de Informática Educativa. 375–384.

Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3, 33–35.

Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén. 2012. Experimentation in software engineering. Springer Science & Business Media.

Gary Ka-Wai Wong and Ho-Yin Cheung. 2020. Exploring children’s perceptions of developing twenty-first century skills through computational thinking and programming. Interactive Learning Environments 28, 4, 438–450.

Humberto Zanetti, Marcos Borges, and Ivan Ricarte. 2016. Pensamento computacional no ensino de programação: uma revisão sistemática da literatura brasileira. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de Informática na Educação-SBIE), Vol. 27. 21.

Sylvia da Rosa Zipitría. 2018. Piaget and computational thinking. In Proceedings of the 7th Computer Science Education Research Conference. 44–50.
Publicado
24/04/2023
Como Citar

Selecione um Formato
GARCIA, Julian Mubarack; BITTENCOURT, Roberto A.. Um Mapeamento Sistemático da Literatura sobre Pensamento Computacional na Perspectiva dos Fundamentos Teóricos de Aprendizagem. In: SIMPÓSIO BRASILEIRO DE EDUCAÇÃO EM COMPUTAÇÃO (EDUCOMP), 3. , 2023, Evento Online. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 01-12. DOI: https://doi.org/10.5753/educomp.2023.227992.