Clustering-Based Analysis of Green Area Reduction and Thermal Impact in Marabá-PA

  • Mayara Ferreira Unifesspa
  • Vitor Castro Unifesspa
  • Marcela Alves Unifesspa
  • Hugo Kuribayashi Unifesspa

Resumo


This study investigates the thermal impact related with the reduction of green areas in the municipality of Marabá-PA through the analysis of satellite imagery and the application of Machine Learning (ML) clustering techniques. The temporal evaluation reveals a significant expansion of urban areas accompanied by a marked decline in vegetated regions. The results demonstrate a strong correlation between decreased green cover and increased land surface temperatures, exacerbating the effects of the local heat island. These findings underscore the urgent need for integrated environmental preservation strategies and the implementation of public policies that promote sustainable urban growth. Recommendations include prioritizing the restoration of green infrastructure, adopting integrated urban planning that respects historical land use patterns, and balancing economic development with the conservation of natural resources to mitigate thermal impacts and improve regional quality of life.

Referências

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027–1035.

Calinski, T. and Harabasz, J. (1974). A Dendrite Method for Cluster Analysis. Communications in Statistics, 3:1–27.

Cheveldayoff, P. et al. (2023). Considerations for occupational heat exposure: A scoping review. PLOS Climate, 2(9):1–21.

Copernicus Climate Change Service (2025). Global Climate Highlights 2024.

da Silva, J. C. R. et al. (2022). Sensoriamento Remoto para Análise de Ilhas de Calor e Frio no Município de Curitiba: Remote sensing for heat and cold island analysis in the city of Curitiba. Studies in Environmental and Animal Sciences, 3(2):406–415.

da Silva, J. P. S., Loureiro, G. E., and de Sousa, I. (2021). Análise Espaço-Temporal da Temperatura da Superfície Terrestre na Cidade de Marabá, Pará, Brasil. Research, Society and Development, 10(7):e41710716718–e41710716718.

da Silva Santos, K., Oliveira, B. F. A., and Ignotti, E. (2021). Mudanças Climáticas e suas Relações com o Uso da Terra no Município de Alta Floresta-Amazônia Meridional Brasileira. Biodiversidade Brasileira, 11(3).

De Andrade, J. V. et al. (2024). Exploring Climatic Shifts in Brazilian Climates: Insights from ARMAX, Decision Trees, and Artificial Neural Networks. In Brazilian Conference on Intelligent Systems, pages 167–179. Springer.

De Andrade, J. V. R. et al. (2023). Assessing the Effect of Urban Expansion and Deforestation on Temperature Rise in Cajazeiras, Brazil: A Data-Driven Approach. In 2023 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pages 1–6.

Ebi, K. L. et al. (2021). Hot Weather and Heat Extremes: Health Risks. The lancet, 398(10301):698–708.

Faurie, C. et al. (2022). Association between high temperature and heatwaves with heat-related illnesses: A systematic review and meta-analysis. Science of The Total Environment, 852:158332.

Fisch, G., Marengo, J. A., and Nobre, C. A. (1996). Clima da Amazonia. Climanálise - Boletim de Monitoramento e Análise Climática, x:24–41.

IBGE (2022). Panorama do Município de Marabá - PA. Disponível em: [link].

INMET (2025). 2024 foi o Ano mais Quente no Brasil desde 1961. Disponível em: [link].

Kalnay, E. and Cai, M. (2003). Impact of Urbanization and Land-use Change on Climate. Nature, 423(6939):528–531.

Mandú, T. B. et al. (2021). Impacto das Ondas de Calor no Conforto Térmico Humano na Região da Floresta Nacional do Tapajós, Oeste do Pará. Biodiversidade Brasileira, 11(4):98–108.

MapBiomas (2024). Códigos de legenda. Disponível em: [link].

Nobre, C. A., Sampaio, G., and Salazar, L. (2007). Mudanças climáticas e Amazônia. Ciência e Cultura, 59(3):22–27.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65.

Sheng, Q. et al. (2025). The mediating effect of microclimate in the impacts of roadside vegetation barriers on air pollution in pedestrian spaces. Building and Environment, 279:113052.

Song, J. et al. (2021). Ambient high temperature exposure and global disease burden during 1990–2019: An analysis of the global burden of disease study 2019. Science of The Total Environment, 787:147540.

USGS (2023). Landsat 8-9 Coll. 2 L2 Science Product Guide.

Wang, C. et al. (2022). Effects of vegetation restoration on local microclimate on the loess plateau. Journal of Geographical Sciences, 32(2):291–316.

Zogahib, A. L. N. et al. (2024). Climate Xhanges and Its Impacts on Cities: Case Study of Characteristics of The Drought in The State of Amazonas, Brazil. Research, Society and Development, 13(9):e9913946940.
Publicado
29/09/2025
FERREIRA, Mayara; CASTRO, Vitor; ALVES, Marcela; KURIBAYASHI, Hugo. Clustering-Based Analysis of Green Area Reduction and Thermal Impact in Marabá-PA. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 22. , 2025, Fortaleza/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 1316-1327. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2025.11778.

Artigos mais lidos do(s) mesmo(s) autor(es)