Parameter Estimation of a Wave Energy Converter Model using Physics Informed Neural Networks

  • João Pinheiro L. P. UFRJ
  • Rodrigo de S. Luna UFRJ
  • Daniel R. Figueiredo UFRJ

Resumo


Wave Energy Converters (WECs) play a vital role in the pursuit of sustainable marine energy, offering a promising solution to harness the vast potential of ocean waves to generate energy. However, the accurate identification of physical parameters governing WEC dynamics is a major challenge, especially when direct measurements of the system are limited or noisy. This paper addresses the inverse problem of estimating unknown parameters in a physical model for a WEC system using Physics-Informed Neural Networks (PINNs). The proposed approach incorporates the governing physical equations as soft constraints, giving rise to a physical loss function that is combined with a data loss function and optimized during training. By generating synthetic data that simulates the dynamic response of a WEC, we employ PINNs to infer three critical physical parameters of the model The approach demonstrates high accuracy, particularly when sufficient data is available for training, and remains robust under varying levels of noise. These findings highlight the suitability of PINNs for inverse problems in wave energy systems, supporting their use in system identification and control.

Referências

Ayyad, M., Ali, S., Sayed, M., Salem, H., Elnady, H., and Khouya, A. (2025). System identification of oscillating surge wave energy converter using physics-informed neural network. Applied Energy, 378:124703.

Berardi, M., Difonzo, F., and Icardi, M. (2025). Inverse physics-informed neural networks for transport models in porous materials. Computer Methods in Applied Mechanics and Engineering, 435:117628.

Bhinder, M. S., Yeung, H., Babarit, A., and Alam, M. R. (2020). A review of wave energy converter technology. Renewable and Sustainable Energy Reviews, 123:109766.

Falcão, A. F. d. O. (2010). Wave energy utilization: A review of the technologies. Renewable and sustainable energy reviews, 14(3):899–918.

Falnes, J. (2007). A review of wave-energy extraction. Marine structures, 20(4):185–201.

Garcia-Rosa, P. B., Cunha, J. P. V. S., Lizarralde, F., Estefen, S. F., Machado, I. R., and Watanabe, E. H. (2013). Wave-to-wire model and energy storage analysis of an ocean wave energy hyperbaric converter. IEEE Journal of Oceanic Engineering, 39(2):386–397.

Garcia-Rosa, P. B. and et al. (2009). Efficiency optimization in a wave energy hyperbaric converter. In 2009 International Conference on Clean Electrical Power, pages 68–75. IEEE.

Kaipio, J. and Somersalo, E. (2006). Statistical and computational inverse problems. Springer Science & Business Media.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., and Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440.

Kissas, G., Yang, Y., Hwuang, E., Witschey, W. R., Detre, J. A., and Perdikaris, P. (2020). Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4d flow mri data using physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 358:112623.

Machado, I. R., Watanabe, E. H., and Garcia-Rosa, P. B. (2015). Modeling and analysis of a sea wave energy converter. In 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pages 1–7. IEEE.

Mamlankou, C. (2025). Inverse problem analysis in the dynamics of damped harmonic oscillators using pinns.

Ni, W., Hu, C., Ma, M., Chen, J., Wu, Y., and Xu, Z. (2024). Power prediction of oscillating water column power generation device based on physical information embedded neural network. Energy, 306:132493.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707.

Raissi, M., Yazdani, A., and Karniadakis, G. E. (2020). Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030.

SciPy Developers (2024). scipy.integrate.solve ivp — SciPy v1.13.0 Reference Guide. [link]. Accessed: 1 June 2025.

Shadman, M., Silva, C., Faller, D., Wu, Z., de Freitas Assad, L., Landau, L., Levi, C., and Estefen, S. (2019). Ocean renewable energy potential, technology, and deployments: a case study of brazil. Energies, 12(19):3658.

Song, X., Zhao, Y., and Liu, Y. (2021). Physics-informed neural networks for seismic response modeling. Geophysical Journal International, 225(2):1185–1197.

Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. SIAM.

Zhang, Z., Guo, X., and Karniadakis, G. E. (2020). Physics-informed neural networks for forward and inverse problems in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 373:113500.
Publicado
29/09/2025
P., João Pinheiro L.; LUNA, Rodrigo de S.; FIGUEIREDO, Daniel R.. Parameter Estimation of a Wave Energy Converter Model using Physics Informed Neural Networks. In: ENCONTRO NACIONAL DE INTELIGÊNCIA ARTIFICIAL E COMPUTACIONAL (ENIAC), 22. , 2025, Fortaleza/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 1926-1937. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2025.14260.

Artigos mais lidos do(s) mesmo(s) autor(es)