Personalized review recommendation for establishment owners
Abstract
Online review apps usually recommend the most useful reviews for consumers to read. Here, we introduce a new problem: to evaluate the usefulness of a review from the owner’s perspective. Specifically, we propose using the review’s aspects and sentiments, and generating a rank ordered by the most useful reviews from the establishment management and developing point of view.
Keywords:
Establishment Rating, Helpful Reviews, Review Rating
References
Bigonha, C., Cardoso, T. N. C., Moro, M. M., Gonçalves, M. A., and Almeida, V. A. F. (2012). Sentiment-based influence detection on twitter. JBCS, 18(3):169–183.
Deepak, A. et al. (2014). The promises and perils of mining github. In MSR.
Ghose, A. and Ipeirotis, P. G. (2011). Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics. IEEE, pages 1498–1512.
Janyce, W. et al. (1999). Development and use of a gold-standard data set for subjectivity classifications. In ACL, pages 246–253.
Jo, Y. and Oh, A. H. (2011). Aspect and sentiment unification model for online review analysis. In WSDM, pages 815–824.
Liu, B. and Zhang, L. (2012). A Survey of Opinion Mining and Sentiment Analysis. In Mining Text Data, pages 415–463.
Liu, J. et al. (2007). Low-quality product review detection in opinion summarization. In EMNLP-CoNLL.
Lourenço Jr., R. et al. (2014). Economically-efficient sentiment stream analysis. In SIGIR, pages 637–646.
Maroun, L., Moro, M. M., Almeida, J., and da Silva, A. P. C. (2016). Assessing review recommendation techniques under a ranking perspective. In ACM Hypertext.
McAuley, J. and Leskovec, J. (2013). Hidden factors and hidden topics: Understanding rating dimensions with review text. In RecSys, pages 165–172.
O’Mahony, M. P. and Smyth, B. (2009). Learning to recommend helpful hotel reviews. In RecSys.
Pang, B. and Lee, L. (2005). Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, pages 115–124.
Prado, T. R. P. and Moro, M. M. (2015). POIView: Análise de Tendências a partir de Revisões Online. In SBBD Demo Session, pages 167–172.
Riloff, E. and Wiebe, J. (2003). Learning extraction patterns for subjective expressions. In EMNL, pages 105–112.
Sápiras, L. A. and Becker, K. (2014). Mineração da opinião sobre aspectos de candidatos a eleições em comentários de notícias. In SBBD, pages 117–126.
Tang, J. et al. (2013). Context-aware review helpfulness rating prediction. In RecSys, pages 1–8.
Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In ACL, pages 417 – 424.
Deepak, A. et al. (2014). The promises and perils of mining github. In MSR.
Ghose, A. and Ipeirotis, P. G. (2011). Estimating the helpfulness and economic impact of product reviews: Mining text and reviewer characteristics. IEEE, pages 1498–1512.
Janyce, W. et al. (1999). Development and use of a gold-standard data set for subjectivity classifications. In ACL, pages 246–253.
Jo, Y. and Oh, A. H. (2011). Aspect and sentiment unification model for online review analysis. In WSDM, pages 815–824.
Liu, B. and Zhang, L. (2012). A Survey of Opinion Mining and Sentiment Analysis. In Mining Text Data, pages 415–463.
Liu, J. et al. (2007). Low-quality product review detection in opinion summarization. In EMNLP-CoNLL.
Lourenço Jr., R. et al. (2014). Economically-efficient sentiment stream analysis. In SIGIR, pages 637–646.
Maroun, L., Moro, M. M., Almeida, J., and da Silva, A. P. C. (2016). Assessing review recommendation techniques under a ranking perspective. In ACM Hypertext.
McAuley, J. and Leskovec, J. (2013). Hidden factors and hidden topics: Understanding rating dimensions with review text. In RecSys, pages 165–172.
O’Mahony, M. P. and Smyth, B. (2009). Learning to recommend helpful hotel reviews. In RecSys.
Pang, B. and Lee, L. (2005). Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, pages 115–124.
Prado, T. R. P. and Moro, M. M. (2015). POIView: Análise de Tendências a partir de Revisões Online. In SBBD Demo Session, pages 167–172.
Riloff, E. and Wiebe, J. (2003). Learning extraction patterns for subjective expressions. In EMNL, pages 105–112.
Sápiras, L. A. and Becker, K. (2014). Mineração da opinião sobre aspectos de candidatos a eleições em comentários de notícias. In SBBD, pages 117–126.
Tang, J. et al. (2013). Context-aware review helpfulness rating prediction. In RecSys, pages 1–8.
Turney, P. D. (2002). Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In ACL, pages 417 – 424.
Published
2016-10-04
How to Cite
PRADO, Thiago R. P.; MORO, Mirella M..
Personalized review recommendation for establishment owners. In: BRAZILIAN SYMPOSIUM ON DATABASES (SBBD), 31. , 2016, Salvador/BA.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2016
.
p. 223-228.
ISSN 2763-8979.
DOI: https://doi.org/10.5753/sbbd.2016.24332.
