Identification of Pulmonary Nodules Using Fuzzy Connectivity Map Construction from the Choice of an Ideal Seed
Abstract
The main objective of this study was to compare quantitatively the accuracy of the segmentation through the algorithm for map construction of fuzzy connectedness based on the choice of an ideal seed compared to manual segmentation. We randomly selected 30 nodules of the project "Lung Image Database Consortium". The developed algorithm was effective in identifying lung nodules reaching 90.4% accuracy. Moreover, it surpassed the accuracy of the traditional segmentation algorithm for region growing at 9.1%. Therefore, this technique has the potential to be used as a tool for the aid to diagnosis of lung cancer.References
Ayres, P. A. A., Cavalcante, R. C., Oliveira, M. C. (2010) “Auxílio à Classificação de Nódulos Pulmonares Usando Recuperação de Imagens Similares Baseada em Análise de Textura 3D e Registro de Imagem 3D”, XXX Congresso da Sociedade Brasileira de Computação - WIM - X Workshop de Informática Médica, Belo Horizonte/MG Brasil.
G. T. Herman and B. M. Carvalho. (2001) “Multiseeded segmentation using fuzzy connectedness”, IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 460–474.
INCA – Instituto Nacional do Câncer. (2010) [link].
J. Dehmeshi, H. Amin, M. Valdivieso, and X. J. Ye. (2008) "Segmentation of pulmonary nodules in thoracic CT scans: A region growing approach", IEEE Transactions on Medical Imaging, vol. 27, p. 467-480.
M. F. McNitt-Gray, S. G. Armato, C. R. Meyer, A. P. Reeves, G. McLennan, R. C. Pais, J. Freymann, M. S. Brown, R. M. Engelmann, P. H. Bland, G. E. Laderach, C. Piker, J. Guo, Z. Towfic, D. P. Y. Qing, D. F. Yankelevitz, D. R. Aberle, E. J. R. van Beek, H. MacMahon, E. A. Kazerooni, B. Y. Croft, and L. P. Clarke. (2008) "The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation," Academic Radiology, vol. 14, pp. 1464-1474.
M. Sonka, W. Park, and E. A. Hoffman. (1996) “Rule-based detection of intrathoracic airway trees,” IEEE Trans. Med. Imag, vol. 15, no. 3, p. 314-326.
Milan Sonka, Vaclav Hlavac, and Roger Boyle. (2008) “Image Processing, Analysis, and Machine Vision”, Thomson, 3 th edition.
R. Bellotti, F. De Carlo, G. Gargano, S. Tangaro, D. Cascio, E. Catanzariti, P. Cerello, S. C. Cheran, P. Delogu, I. De Mitri, C. Fulcheri, D. Grosso, A. Retico, S. Squarcia, E. Tommasi, and B. Golosio. (2007) "A CAD system for nodule detection in lowdose lung CTs based on region growing and a new active contour model," Medical Physics, vol. 34, p. 4901-4910.
R. Gonzales and R. Woods. (2002) “Digital Image Processing”, Upper Saddle River NJ: Prentice-Hall, 2 th edition.
Sluimer, I., A. Schilham. (2006) "Computer analysis of computed tomography scans of the lung: A survey." IEEE Transactions on Medical Imaging, p. 385-405.
T. Yoo. (2004) “Insight into images: principles and practice for segmentation, registration and image analysis”, vol. 1, AK Peters LTDA, Massachusetts, USA.
Y. X. Zhou and J. Bai. (2007) "Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI", IEEE Transactions on Biomedical Engineering, vol. 54, p. 122-129.
G. T. Herman and B. M. Carvalho. (2001) “Multiseeded segmentation using fuzzy connectedness”, IEEE Transactions on Pattern Analysis and Machine Intelligence, p. 460–474.
INCA – Instituto Nacional do Câncer. (2010) [link].
J. Dehmeshi, H. Amin, M. Valdivieso, and X. J. Ye. (2008) "Segmentation of pulmonary nodules in thoracic CT scans: A region growing approach", IEEE Transactions on Medical Imaging, vol. 27, p. 467-480.
M. F. McNitt-Gray, S. G. Armato, C. R. Meyer, A. P. Reeves, G. McLennan, R. C. Pais, J. Freymann, M. S. Brown, R. M. Engelmann, P. H. Bland, G. E. Laderach, C. Piker, J. Guo, Z. Towfic, D. P. Y. Qing, D. F. Yankelevitz, D. R. Aberle, E. J. R. van Beek, H. MacMahon, E. A. Kazerooni, B. Y. Croft, and L. P. Clarke. (2008) "The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation," Academic Radiology, vol. 14, pp. 1464-1474.
M. Sonka, W. Park, and E. A. Hoffman. (1996) “Rule-based detection of intrathoracic airway trees,” IEEE Trans. Med. Imag, vol. 15, no. 3, p. 314-326.
Milan Sonka, Vaclav Hlavac, and Roger Boyle. (2008) “Image Processing, Analysis, and Machine Vision”, Thomson, 3 th edition.
R. Bellotti, F. De Carlo, G. Gargano, S. Tangaro, D. Cascio, E. Catanzariti, P. Cerello, S. C. Cheran, P. Delogu, I. De Mitri, C. Fulcheri, D. Grosso, A. Retico, S. Squarcia, E. Tommasi, and B. Golosio. (2007) "A CAD system for nodule detection in lowdose lung CTs based on region growing and a new active contour model," Medical Physics, vol. 34, p. 4901-4910.
R. Gonzales and R. Woods. (2002) “Digital Image Processing”, Upper Saddle River NJ: Prentice-Hall, 2 th edition.
Sluimer, I., A. Schilham. (2006) "Computer analysis of computed tomography scans of the lung: A survey." IEEE Transactions on Medical Imaging, p. 385-405.
T. Yoo. (2004) “Insight into images: principles and practice for segmentation, registration and image analysis”, vol. 1, AK Peters LTDA, Massachusetts, USA.
Y. X. Zhou and J. Bai. (2007) "Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI", IEEE Transactions on Biomedical Engineering, vol. 54, p. 122-129.
Published
2011-07-19
How to Cite
SILVA, Tiago Emmanuel Praxedes; OLIVEIRA, Marcelo Costa.
Identification of Pulmonary Nodules Using Fuzzy Connectivity Map Construction from the Choice of an Ideal Seed. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 11. , 2011, Natal/RN.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2011
.
p. 1738-1745.
ISSN 2763-8952.
