Evolving Convolutional Neural Networks for Glaucoma Diagnosis

  • Alan Lima UFMA
  • Lucas B. Maia UFMA
  • Pedro Thiago Cutrim dos Santos UFMA
  • Geraldo Braz Junior UFMA
  • João D. S. de Almeida UFMA
  • Anselmo C. de Paiva UFMA

Resumo


Glaucoma is an ocular disease that causes damage to the eye’s optic nerve and successive narrowing of the visual field in affected patients which can lead the patient, in advanced stage, to blindness. This work presents a study on the use of Convolutional Neural Networks (CNNs) for the automatic diagnosis through eye fundus images. However, building a perfect CNN involves a lot of effort that in many situations is not always able to achieve satisfactory results. The objective of this work is to use a Genetic Algorithm (GA) to optimize CNNs architectures through evolution that can helps in glaucoma diagnosis using eye’s fundus image from RIM-ONE-r2 dataset. Our partial results demonstrate satisfactory results after training the best individual chosen by GA with the achievement of an accuracy of 91%.

Referências

Araújo, J. D. L., de Paiva, A. C., de Almeida, J. D. S., Neto, O. P. S., de Sousa, J. A., Silva, A. C., and Júnior, G. B. (2017). Diagnóstico de glaucoma em imagens de fundo de olho utilizando os Índices de diversidade de shannon e mcintosh. XXXVII Congresso da Sociedade Brasileira de Computação – 17o WIM - Workshop de Informática Médica, pages 1873–1882.

Chen, X., Xu, Y., Wong, D. W. K., Wong, T. Y., and Liu, J. (2015). Glaucoma detection based on deep convolutional neural network. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 715–718.

Chollet, F. (2015). Keras. [link]. [Online; accessed 15-March-2017].

David, E. and Greental, I. (2017). Genetic algorithms for evolving deep neural networks. CoRR, abs/1711.07655.

de Sousa, J. A., de Paiva, A. C., Sousa de Almeida, J. D., Silva, A. C., Junior, G. B., and Gattass, M. (2017). Texture based on geostatistic for glaucoma diagnosis from fundus eye image. Multimedia Tools and Applications, 76(18):19173–19190.

Fumero, F., Alayon, S., Sanchez, J. L., Sigut, J., and Gonzalez-Hernandez, M. (2011). Rim-one: An open retinal image database for optic nerve evaluation. In 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pages 1–6.

Miikkulainen, R., Liang, J. Z., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H., Navruzyan, A., Duffy, N., and Hodjat, B. (2017). Evolving deep neural networks. CoRR, abs/1703.00548.

Sevastopolsky, A. (2017). Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network. Pattern Recognition and Image Analysis, 27(3):618–624.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation, 10(2):99–127.

Sun, Y., Xue, B., and Zhang, M. (2017). Evolving deep convolutional neural networks for image classification. CoRR, abs/1710.10741.

Xie, L. and Yuille, A. L. (2017). Genetic CNN. CoRR, abs/1703.01513.

Yadav, S. L. and Soha, A. (2017). Comparative study of different selection techniques in genetic algorithm. International Journal of Engineering, Science and Mathematics, 6(3).

Zheng, L., Zhao, Y., Wang, S., Wang, J., and Tian, Q. (2016). Good practice in CNN feature transfer. CoRR, abs/1604.00133.
Publicado
22/07/2018
LIMA, Alan; MAIA, Lucas B.; DOS SANTOS, Pedro Thiago Cutrim; BRAZ JUNIOR, Geraldo; DE ALMEIDA, João D. S.; DE PAIVA, Anselmo C.. Evolving Convolutional Neural Networks for Glaucoma Diagnosis. In: SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE (SBCAS), 18. , 2018, Natal. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 247-252. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2018.3687.

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 > >>