AI-Supported Pedagogical Architecture for Developing Self-Regulated Learning in Students
Abstract
This study investigates the impacts of a Pedagogical Architecture (PA) supported by Artificial Intelligence (AI) on student engagement and the promotion of Self-Regulated Learning (SRL) in Virtual Learning Environments (VLEs). The research was conducted in an introductory Python programming extension course, where the proposed architecture was implemented in Moodle, one of the most widely used VLE platforms globally. Through the analysis of educational data and the application of data mining techniques, this study aims to identify student interaction patterns and correlate them with academic performance, offering a deeper understanding of the architecture's effectiveness in fostering self-regulation skills and improving educational outcomes.
References
Biancardi, C., Cristina dos Santos de Andrade, J., Santana, S., e Silva de Menezes, C. (2021). Apa2i - uma arquitetura pedagógica aberta, adaptativa e inteligente para construção cooperativa de conhecimento. Revista Novas Tecnologias na Educação, 18(2):131–140.
Coman, C., T, îru, L. G., Meses, an-Schmitz, L., Stanciu, C., e Bularca, M. C. (2020). Online teaching and learning in higher education during the coronavirus pandemic: Students’ perspective. Sustainability, 12(24):10367.
Costa, J., Dorça, F., e Araújo, R. (2020). Avaliação do comportamento de estudantes em um ambiente educacional ubíquo. In Anais do XXXI Simpósio Brasileiro de Informática na Educação, páginas 182–191, Porto Alegre, RS, Brasil. SBC.
Fischer, C., Pardos, Z. A., Baker, R. S., Williams, J. J., Smyth, P., Yu, R., Slater, S., Baker, R., e Warschauer, M. (2020). Mining big data in education: Affordances and challenges. Review of Research in Education, 44(1):130–160.
Maldonado-Mahauad, J., Pérez-Sanagustín, M., e Beyle, C. (2020). A questionnaire for measuring self-regulated learning in massive open online courses. In 2020 XLVI Latin American Computing Conference (CLEI), páginas 400–409. IEEE.
McKinney, W. et al. (2010). Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, volume 445, páginas 51–56. Austin, TX.
Menezes, C. d., Castro Junior, A. d., e Aragón, R. (2020). Arquiteturas pedagógicas para aprendizagem em rede. Série de livros texto da CEIE-SBC. Disponível em: [link]. Acessado em: 7:21–08.
Moodle (2024). Registered Moodle sites. Registered Moodle sites. Disponível em [link].
Panadero, E. (2017). A Review of Self-regulated Learning: Six Models and Four Directions for Research. Frontiers in Psychology, 8:422.
Pintrich, P. R. et al. (1991). A manual for the use of the motivated strategies for learning questionnaire (mslq).
Puustinen, M. e Pulkkinen, L. (2001). Models of self-regulated learning: A review. Scandinavian Journal of Educational Research, 45:269–286.
Silva,F.,Menezes,C.,eJunior,A.C.(2023). Ensino introdutório de programação: Um estudo rumo ao uso das arquiteturas pedagógicas. In Anais do XXXIV Simpósio Brasileiro de Informática na Educação, páginas 428–438, Porto Alegre, RS, Brasil. SBC.
Spearman, C. (1961). The proof and measurement of association between two things. The American Journal of Psychology, 100(3/4):441–471.
World Health Organization (2020). WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. World Health Organization. Available at [link] — 11-march-2020.
Zar, J. H. (2005). Spearman rank correlation. Encyclopedia of biostatistics, 7.
Zimmerman, B. e Martinez-Pons, M. (1986). Development of a structured interview for assessing student use of self-regulated learning strategies. American Educational Research Journal, 23:614–628.
