Estimando métricas de serviço através de In-band Network Telemetry

  • Leandro C. de Almeida IFPB / UFSCar
  • Fábio L. Verdi UFSCar
  • Rafael Pasquini UFU

Abstract


Recently, new approaches of fine telemetry in the network, through In-band Network Telemetry in programmable devices, have delivered new and accurate information about the status of the network. In this context, this work presents indications that it is possible to use fine metrics of network telemetry in a programmable data plan, in conjunction with machine learning methods, to estimate quality of service metrics. A minimalist proof of concept was carried out and preliminary results indicate that, with the aid of machine learning algorithms, it is possible to estimate metrics for a video service from fine metrics related to the buffers of the switches.

References

Arslan, S. and McKeown, N. (2019). Switches know the exact amount of congestion. In Proceedings of the 2019 Workshop on Buffer Sizing, BS ’19, New York, NY, USA. Association for Computing Machinery.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. (2014). P4: Programming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95.

Boutaba, R., Salahuddin, M., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., and Caicedo Rendon, O. (2018). A comprehensive survey on machine learning for networking: Evolution, applications and research opportunities. Journal of Internet Services and Applications, 9.

Calasans, Marta e Lacerda, C. (2020). DASH sobre OpenFlow: estimando métricas de QoS a partir da rede. PhD thesis, Universidade Federal de Uberlândia, Uberlândia MG Brazil.

Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., and Jacobson, V. (2016). Bbr: Congestion-based congestion control: Measuring bottleneck bandwidth and round-trip propagation time. Queue, 14(5):20–53.

Faceli, K., Lorena, A. C., Gama, J., and Carvalho, A. C. P. d. L. F. d. (2011). Inteligência artificial: uma abordagem de aprendizado de máquina. LTC.

Fernandes, J. R. M. (2018). Construção de um serviço conteinerizado de vídeo sob demanda baseado em DASH para experimentação e coleta de métricas de desempenho. PhD thesis, UNIVERSIDADE FEDERAL DE UBERL ˆANDIA.

Garcia, L. F. U., Villaça, R. S., Ribeiro, M. R. N., Martins, R. F. T., Verdi, F. L., and Marcondes, C. (2018). Introdução à linguagem p4 teoria e prática. Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC) Minicursos.

Hauser, F., Häberle, M., Merling, D., Lindner, S., Gurevich, V., Zeiger, F., Frank, R., and Menth, M. (2021). A survey on data plane programming with p4: Fundamentals, advances, and applied research.

ISO (2014). Dynamic adaptive streaming over http (dash)-part 1: Media presentation description and segment formats. ISO/IEC, pages 23009–1.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learning. Springer Texts in Statistics. Springer, New York, NY.

Kim, Y., Park, J., Kwon, D., and Lim, H. (2018). Buffer management of virtualized network slices for quality-of-service satisfaction. In 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), number 18725013 in 1, pages 1–4, Verona, Italy. IEEE.

Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. (2006). Data preprocessing for supervised learning. International Journal of Computer Science, 1:111–117.

Lederer, S. (2015). Why youtube & netix use mpeg-dash in html5. [link]. 5-beyond/. Accessed: 2020-03-24.

Li, Y., Miao, R., Liu, H. H., Zhuang, Y., Feng, F., Tang, L., Cao, Z., Zhang, M., Kelly, F., Alizadeh, M., and Yu, M. (2019). Hpcc: High precision congestion control. In Proceedings of the ACM Special Interest Group on Data Communication, SIGCOMM ’19, page 44–58, New York, NY, USA. Association for Computing Machinery.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., and Turner, J. (2008). Openow: Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74.

P4 (2020). In-band network telemetry (int) dataplane specification. Technical report, P4 Consortium.

Stadler, R., Pasquini, R., and Fodor, V. (2017). Learning from network device statistics. J. Netw. Syst. Manag., 25(4):672–698.

Xiong, Z. and Zilberman, N. (2019). Do switches dream of machine learning? toward in-network classification. In Proceedings of the 18th ACM Workshop on Hot Topics in Networks, HotNets ’19, page 25–33, New York, NY, USA. Association for Computing Machinery.
Published
2021-08-16
ALMEIDA, Leandro C. de; VERDI, Fábio L.; PASQUINI, Rafael. Estimando métricas de serviço através de In-band Network Telemetry. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 39. , 2021, Uberlândia. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 252-265. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2021.16725.

Most read articles by the same author(s)

1 2 > >>