KaspaFog: uma abordagem na névoa para o gerenciamento de fontes e cargas de eletricidade de uma Microgrid com foco na redução energética

  • Eric B. Barros UFBA
  • Wesley O. Souza UFBA
  • Matheus T. M. Barbosa UFBA
  • Bruno G. Batista UNIFEI
  • Bruno T. Kuehne UNIFEI
  • Dionisio Leite UFMS
  • Maycon L. M. Peixoto UFBA

Resumo


Em Microgrids a produção de energia é realizada combinando fontes renováveis e não renováveis de geração de energia. Desse modo, é fundamental o controle da geração não renovável para evitar o desperdício. Esse tipo de problema tem sido investigado por várias pesquisas, que empregam variações do ajuste do controlador Proporcional-Integral-Derivativo (PID) para evitar perdas de energia. Entretanto, nenhum dos trabalhos empregou uma estratégia para reduzir o tempo de equilíbrio entre os geradores de energia. Nesse contexto, este trabalho apresenta o KaspaFog, uma abordagem que emprega uma estratégia de predição de dados utilizando o modelo SARIMA e uma rede neural com aprendizado por reforço para ajustar o controle da geração de energia. O KaspaFog é uma infraestrutura na névoa apoiada pela nuvem, devido à necessidade de processamento e tempos de respostas rápidos. Com o uso do KaspaFog, foi alcançada uma redução de 18% na produção de energia não renovável em comparação ao ajuste Ziegler-Nichols.

Referências

Abbasi, M., Mohammadi-Pasand, E., and Khosravi, M. (2021). Intelligent workload allocation in iot–fog–cloud architecture towards mobile edge computing. Computer Communications, 169:71–80.

Barros, E. B. C., Batista, B. G., Kuehne, B. T., Peixoto, M. L. M., et al. (2019). Fog computing model to orchestrate the consumption and production of energy in microgrids. Sensors, 19(11):2642.

Batool, M., Islam, S. M., and Shahnia, F. (2017). Power transaction management amongst coupled microgrids in remote areas. In 2017 IEEE Innovative Smart Grid Technologies Asia (ISGT-Asia), pages 1–6.

Bharathi, K. and Sasikumar, M. (2021). Power ow control based on bidirectional converter for hybrid power generation system using microcontroller. Microprocessors and Microsystems, 82:103950.

Bukh, P. N. D. (1992). The art of computer systems performance analysis, techniques for experimental design, measurement, simulation and modeling.

Chouikhi, S., Merghem-Boulahia, L., and Esseghir, M. (2019). A fog computing architecture for energy demand scheduling in smart grid. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pages 1815–1821. IEEE.

Dileep, G. (2020). A survey on smart grid technologies and applications. Renewable Energy, 146:2589–2625.

Ekanayake, E. (2020). Use of data analytics in microgrids: A survey of techniques. In 2020 3rd International Conference on Power and Energy Applications (ICPEA), pages 103–107. IEEE.

Garg, S., Kaur, K., Kaddoum, G., and Guo, S. (2021). Sdn-nfv-aided edge-cloud interplay for 5g-envisioned energy internet ecosystem. IEEE Network, 35(1):356–364.

Hlava, J., Zemtsov, N., and Frantsuzova, G. (2016). Application of pid controller based on the localization method for ancillary service provision. In 2016 International Siberian Conference on Control and Communications (SIBCON), pages 1–6. IEEE.

Hu, J., Li, Z., Zhu, J., and Guerrero, J. M. (2019). Voltage stabilization: A critical IEEE Industrial Electronics Magazine, step toward high photovoltaic penetration. 13(2):17–30.

Hu, J., Shan, Y., Guerrero, J. M., Ioinovici, A., Chan, K. W., and Rodriguez, J. (2021). Model predictive control of microgrids–an overview. Renewable and Sustainable Energy Reviews, 136:110422.

Mahdavian, M. and Wattanapongsakorn, N. (2013). Pid controller tuning and optimizing for greenhouse lighting application considering real-time pricing in the smart grid. In 2013 International Computer Science and Engineering Conference (ICSEC), pages 85–90. IEEE.

Meje, K. C., Bokopane, L., and Kusakana, K. (2020). Microgrids control strategies: A survey of available literature. In 2020 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), pages 167–173. IEEE.

Minchala-Avila, L. I., Palacio-Baus, K., Ortiz, J. P., Valladolid, J. D., and Ortega, J. (2016). Comparison of the performance and energy consumption index of modelbased controllers. In 2016 IEEE Ecuador Technical Chapters Meeting (ETCM), pages 1–6. IEEE.

Ozer, I., Efe, S. B., and Ozbay, H. (2021). A combined deep learning application for short term load forecasting. Alexandria Engineering Journal, 60(4):3807–3818.

Papageorgiou, A., Ashok, A., Farzad, T. H., and Sundberg, C. (2020). Climate change impact of integrating a solar microgrid system into the swedish electricity grid. Applied Energy, 268:114981.

Parise, G., Martirano, L., Kermani, M., and Kermani, M. (2017). Designing a power control strategy in a microgrid using pid/fuzzy controller based on battery energy storage. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pages 1–5. IEEE.

Saadatmand, M., Mozafari, B., Gharehpetian, G. B., and Soleymani, S. (2021). Optimal coordinated tuning of power system stabilizers and wide-area measurement-based fractional-order pid controller of large-scale pv farms for lfo damping in smart grids. International Transactions on Electrical Energy Systems, 31(2):e12612.

Singh, B. P. and Gore, M. M. (2021). Softmicrogrid: a software assisted microgrid for optimal prosumer satisfaction. Technology and Economics of Smart Grids and Sustainable Energy, 6(1):1–18.

Sinha, S. and Chandel, S. (2015). Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems. Renewable and Sustainable Energy Reviews, 50:755–769.

Yin, L. and Lu, Y. (2021). Expandable deep width learning for voltage control of threestate energy model based smart grids containing exible energy sources. Energy, page 120437.
Publicado
16/08/2021
BARROS, Eric B.; SOUZA, Wesley O.; BARBOSA, Matheus T. M.; BATISTA, Bruno G.; KUEHNE, Bruno T.; LEITE, Dionisio; PEIXOTO, Maycon L. M.. KaspaFog: uma abordagem na névoa para o gerenciamento de fontes e cargas de eletricidade de uma Microgrid com foco na redução energética. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 39. , 2021, Uberlândia. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 . p. 322-335. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2021.16730.

Artigos mais lidos do(s) mesmo(s) autor(es)