Um componente de network slicing para o suporte de multi-inquilinos nas RANs do LTE.

  • Pedro H. A. Rezende UNICAMP
  • Edmundo R. M. Madeira UNICAMP

Resumo


As redes 5G pretendem integrar “network slicing” em sua arquitetura visando satisfazer os diferentes níveis de serviços de uma quantidade massiva de dispositivos. Network Slicing apoia-se em tecnologias de softwarização, como SDN e NFV, para instanciar slices (redes virtuais) sobre um mesmo substrato físico. Esses slices são mutualmente independentes e customizados de acordo com as necessidades dos usuários. Este trabalho introduz o Otimizador de Slices, um componente desenvolvido como uma extensão do evolved NodeB das redes LTE, responsável por concretizar o conceito de network slicing na transmissão de tráfego downlink das redes LTE. Este componente recebe informações sobre slices oriundas de múltiplos Provedores de Serviços e, a partir da análise dessas informações e do estado da rede, o componente proposto seleciona o melhor slice a ser escalonado no momento. Simulações foram realizadas para avaliar nossa proposta e mostrar os benefícios dela, como a melhora da QoS ofertada aos usuários finais.

Referências

3GPP (2017). Disponível em: http://http://www.etsi.org/deliver/etsi ts/136300 136399/136306/10.02.00 60/.

Al-Shabibi, A., De Leenheer, M., Gerola, M., Koshibe, A., Parulkar, G., Salvadori, E., and Snow, B. (2014). OpenVirteX: Make Your Virtual SDNs Programmable. In Proceedings of the Third Workshop on Hot Topics in Software Dened Networking, HotSDN ’14, pages 25–30, New York, NY, USA. ACM.

Blenk, A., Basta, A., Reisslein, M., and Kellerer, W. (2016). Survey on Network Virtualization Hypervisors for Software Dened Networking. IEEE Communications Surveys Tutorials, 18(1):655–685.

Caballero, P., Banchs, A., de Veciana, G., and Costa-Pérez, X. (2017). Network slicing games: Enabling customization in multi-tenant networks. In IEEE INFOCOM 2017 IEEE Conference on Computer Communications, pages 1–9.

Chartsias, P. K., Amiras, A., Plevrakis, I., Samaras, I., Katsaros, K., Kritharidis, D., Trouva, E., Angelopoulos, I., Kourtis, A., Siddiqui, M. S., Vi˜nes, A., and Escalona, E. (2017). SDN/NFV-based end to end network slicing for 5G multi-tenant networks. In 2017 European Conference on Networks and Communications (EuCNC), pages 1–5.

Choyi, V. K., Abdel-Hamid, A., Shah, Y., Ferdi, S., and Brusilovsky, A. (2016). Network slice selection, assignment and routing within 5G Networks. In 2016 IEEE Conference on Standards for Communications and Networking (CSCN), pages 1–7.

Foukas, X., Patounas, G., Elmokash, A., and Marina, M. K. (2017). Network Slicing in 5G: Survey and Challenges. IEEE Communications Magazine, 55(5):94–100.

Grøndalen, O., Zanella, A., Mahmood, K., Carpin, M., Rasool, J., and Østerbø, O. N. (2017). Scheduling Policies in Time and Frequency Domains for LTE Downlink Channel: A Performance Comparison. IEEE Transactions on Vehicular Technology, 66(4):3345–3360.

Haque, I. T. and Abu-Ghazaleh, N. (2016). Wireless Software Dened Networking: A Survey and Taxonomy. IEEE Communications Surveys Tutorials, 18(4):2713–2737.

Hu, M., Chang, Y., Sun, Y., and Li, H. (2016). Dynamic slicing and scheduling for wireless network virtualization in downlink LTE system. In 2016 19th International Symposium on Wireless Personal Multimedia Communications (WPMC), pages 153– 158.

Kamel, M. I., Le, L. B., and Girard, A. (2014). LTE Wireless Network Virtualization: Dynamic Slicing via Flexible Scheduling. In 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), pages 1–5.

Kokku, R., Mahindra, R., Zhang, H., and Rangarajan, S. (2013). CellSlice: Cellular wireless resource slicing for active RAN sharing. In 2013 Fifth International Conference on Communication Systems and Networks (COMSNETS), pages 1–10.

Kreutz, D., Ramos, F. M. V., Veríssimo, P. E., Rothenberg, C. E., Azodolmolky, S., and Uhlig, S. (2015). Software-Dened Networking: A Comprehensive Survey. Proceedings of the IEEE, 103(1):14–76.

LENA (2017). Disponível em: http://networks.cttc.es/mobile-networks/softwaretools/lena/.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., and Turner, J. (2008). OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74.

Mijumbi, R., Serrat, J., Gorricho, J. L., Bouten, N., Turck, F. D., and Boutaba, R. (2016). IEEE Network Function Virtualization: State-of-the-Art and Research Challenges. Communications Surveys Tutorials, 18(1):236–262.

NS-3 (2017). Disponível em: https://www.nsnam.org.

Parsaeefard, S., Jumba, V., Derakhshani, M., and Le-Ngoc, T. (2015). Joint resource In 2015 IEEE provisioning and admission control in wireless virtualized networks. Wireless Communications and Networking Conference (WCNC), pages 2020–2025.

Rezende, P. and Madeira, E. (2018). An adaptive network slicing for LTE Radio Access Networks. In 2018 Wireless Days.

Samdanis, K., Costa-Perez, X., and Sciancalepore, V. (2016). From network sharing IEEE Communications Magazine, to multi-tenancy: The 5G network slice broker. 54(7):32–39.
Publicado
10/05/2018
Como Citar

Selecione um Formato
REZENDE, Pedro H. A.; MADEIRA, Edmundo R. M.. Um componente de network slicing para o suporte de multi-inquilinos nas RANs do LTE.. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 36. , 2018, Campos do Jordão. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 977-990. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2018.2472.