Definition and Models for the Fog Node Localization and IoT Sensor Demand Allocation Problem

  • Mayron César de Oliveira Moreira UFLA / UFMG
  • Samuel Moreira Abreu Araújo UFSJ
  • Geraldo Robson Mateus UFMG

Abstract


Fog computing emerges from the need to have technologies to deal with the Internet of Things (IoT) efficiently, contrasting with the consolidated cloud computing model. This study proposed two linear integer mathematical models to solve Fog Nodes Location and Demand Assignment of IoT Sensors (FNLDAS). Considering the limitation of cores and memory of Fog nodes, the objective consists of minimizing the installation costs of Fog nodes and minimizing the makespan. Through experiments performed in instances inspired by real context, we note that both mathematical models achieve optimal solutions in 99% of the scenarios. This demonstrates the potential to integrate them into other solving methods executed in online environments.

References

Asensio, A., Masip-Bruin, X., Durán, R. J., de Miguel, I., Ren, G., Daijavad, S., and Jukan, A. (2020). Designing an efficient clustering strategy for combined fog-to-cloud scenarios. Future Generation Computer Systems, 109:392–406.

Bachiega Jr, J., Costa, B., and Araujo, A. P. F. (2022). Computational perspective of the fog node. arXiv preprint arXiv:2203.07425, pages 1–8.

Bachiega Jr, J., Costa, B., Carvalho, L. R., Rosa, M. J., and Araujo, A. (2023). Computational resource allocation in fog computing: A comprehensive survey. ACM Computing Surveys, 55:336:1–336:31.

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pages 13–15.

CISCO (2023). Cisco edge servers. [link]. Acessado em 12 de janeiro de 2024.

Costa, B., Bachiega Jr, J., Carvalho, L. R., Rosa, M., and Araujo, A. (2022). Monitoring fog computing: A review, taxonomy and open challenges. Computer Networks, 215:1–19.

Costa, B., Bachiega Jr, J., Carvalho, L. R. D., and Araujo, A. P. (2023). Orchestration in fog computing: A comprehensive survey. ACM Computing Surveys, 55:29:1–29:34.

Das, R. and Inuwa, M. M. (2023). A review on fog computing: Issues, characteristics, challenges, and potential applications. Telematics and Informatics Reports, 10:1–20.

Erl, T., Puttini, R., and Mahmood, Z. (2013). Cloud Computing: Concepts, Technology & Architecture. Pearson Education, 1 edition.

Intel (2023). Intel processors. [link]. Acessado em 12 de janeiro de 2024.

Iorga, M., Feldman, L., Barton, R., Martin, M. J., Goren, N., and Mahmoudi, C. (2018). Fog computing conceptual model. [link]. Acessado em 12 de janeiro de 2024.

Ito (2023). Ito solutions - cisco edge servers. [link]. Acessado em 12 de janeiro de 2024.

Moreira, M. C. O., Araújo, S. M. A., and Mateus, G. R. (2024). Resultados detalhados do artigo "definição e modelos para o problema de localização de nós fog e designação de demandas de sensores iot". [link]. Acessado em 12 de janeiro de 2024.

Oracle (2024). O que é iot? [link]. Acessado em 08 de janeiro de 2024.

Queiroz, T. A. D., Canali, C., Iori, M., and Lancellotti, R. (2020). A location-allocation model for fog computing infrastructures. In Proceedings of CLOSER, pages 1–10.

Santos, J., Wauters, T., Volckaert, B., and Turck, F. D. (2021). Towards end-to-end resource provisioning in fog computing over low power wide area networks. Journal of Network and Computer Applications, 175.

Silva, P., Costan, A., and Antoniu, G. (2019). Investigating edge vs. cloud computing trade-offs for stream processing. In Proceedings of IEEE International Conference on Big Data, pages 469–474.
Published
2024-05-20
MOREIRA, Mayron César de Oliveira; ARAÚJO, Samuel Moreira Abreu; MATEUS, Geraldo Robson. Definition and Models for the Fog Node Localization and IoT Sensor Demand Allocation Problem. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 141-154. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2024.1284.