Resource Allocation in Edge and Cloud Computing to Serve IoT Devices: An Analysis Towards 6G
Abstract
Internet of Things (IoT) devices currently require fast processing, and Edge Computing (EC) and Cloud Computing (CC) technologies are employed for this purpose. This article introduces a definition and mathematical model for integrating IoT, EC, and CC sensors in Smart City environments. The model permits that, if necessary, sensor demands can be processed in CC servers rented on demand. Additionally, a study is presented on the generations of communication technologies, up to 6G. In computational experiments, considering these technologies, when adopting 6G technology, the end-to-end delay in addressing the demand of a sensor is ≈ 9ms, significantly lower compared to 4G technology ( ≈ 410ms). Furthermore, the cost-minimizing objective function managed to reduce them by up to approximately 123.81% compared to the function that minimizes end-to-end delays.References
Alsabah, M., Naser, M. A., Mahmmod, B. M., Abdulhussain, S. H., Eissa, M. R., Al-Baidhani, A., Noordin, N. K., Sait, S. M., Al-Utaibi, K. A., and Hashim, F. (2021). 6G Wireless Communications Networks: A Comprehensive Survey. IEEE Access, 9.
Alwis, C. D., Kalla, A., Pham, Q.-V., Kumar, P., Dev, K., Hwang, W.-J., and Liyanage, M. (2021). Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research. IEEE Open Journal of the Communications Society, 2:836–886.
Araujo, S. M. A., de Souza, F. S. H., and Mateus, G. R. (2022). A demand aware strategy for a machine learning approach to VNF-PC problem. In 2022 IEEE 11th International Conference on Cloud Networking (CloudNet), pages 211–219.
Askari, L., Musumeci, F., and Tornatore, M. (2019). Latency-Aware Traffic Grooming for Dynamic Service Chaining in Metro Networks. In ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pages 1–6.
Bari, M. F., Chowdhury, S. R., and Boutaba, R. (2019). ESSO: An Energy Smart Service Function Chain Orchestrator. IEEE Transactions on Network and Service Management, 16(4):1345–1359.
CISCO (2023). Cisco HyperFlex - All Flash and Hybrid Server Nodes Spec Sheet. Spec Sheet REV A.25, CISCO SYSTEMS.
Four-Faith (2022). 5Ghz WiFi Router Range Standard. [Online]; acessado 20/12/2023, disponível em [link].
ITU-R (2015). IMT Traffic Estimates for the years 2020 to 2030. M.2370-0, International Telecommunication Union.
Jia, Y., Wu, C., Li, Z., Le, F., and Liu, A. (2018). Online Scaling of NFV Service Chains Across Geo-Distributed Datacenters. IEEE/ACM Trans. Netw., 26(2):699–710.
Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. M. A., Dang, T. N., and Hong, C. S. (2020). Edge-Computing-Enabled Smart Cities: A Comprehensive Survey. IEEE Internet of Things Journal, 7(10):10200–10232.
Kurose, J. F. and Ross, K. W. (2021). Redes de Computadores e a Internet. Bookman, Brasil, 8 edition.
Long, X., Wu, J., and Chen, L. (2018). Energy-Efficient Offloading in Mobile Edge Computing with Edge-Cloud Collaboration. In Algorithms and Architectures for Parallel Processing, pages 460–475, Cham. Springer International Publishing.
Premsankar, G., Ghaddar, B., Di Francesco, M., and Verago, R. (2018). Efficient Placement of Edge Computing Devices for Vehicular Applications in Smart Cities. In NOMS - IEEE/IFIP Network Operations and Management Symposium. IEEE Press.
Queiroz, T. A. d., Canali, C., Iori, M., and Lancellotti, R. (2022). An Optimization View to the Design of Edge Computing Infrastructures for IoT Applications, pages 1–30. Springer International Publishing, Cham.
Rosendo, D., Silva, P., Simonin, M., Costan, A., and Antoniu, G. (2020). E2Clab: Exploring the Computing Continuum through Repeatable, Replicable and Reproducible Edge-to-Cloud Experiments. In 2020 IEEE International Conference on Cluster Computing (CLUSTER), pages 176–186.
Santos, J., Wauters, T., Volckaert, B., and De Turck, F. (2021). Towards end-to-end resource provisioning in fog computing over low power wide area networks. Journal of Network and Computer Applications, 175:102915.
Shah, A. F. M. S., Qasim, A. N., Karabulut, M. A., Ilhan, H., and Islam, M. B. (2021). Survey and performance evaluation of multiple access schemes for next-generation wireless communication systems. IEEE Access, 9:113428–113442.
Vailshery, L. S. (2023). Number of IoT connected devices worldwide 2019-2023, with forecasts to 2030. [Online]; acessado 20/12/2023, disponível em [link].
Alwis, C. D., Kalla, A., Pham, Q.-V., Kumar, P., Dev, K., Hwang, W.-J., and Liyanage, M. (2021). Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research. IEEE Open Journal of the Communications Society, 2:836–886.
Araujo, S. M. A., de Souza, F. S. H., and Mateus, G. R. (2022). A demand aware strategy for a machine learning approach to VNF-PC problem. In 2022 IEEE 11th International Conference on Cloud Networking (CloudNet), pages 211–219.
Askari, L., Musumeci, F., and Tornatore, M. (2019). Latency-Aware Traffic Grooming for Dynamic Service Chaining in Metro Networks. In ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pages 1–6.
Bari, M. F., Chowdhury, S. R., and Boutaba, R. (2019). ESSO: An Energy Smart Service Function Chain Orchestrator. IEEE Transactions on Network and Service Management, 16(4):1345–1359.
CISCO (2023). Cisco HyperFlex - All Flash and Hybrid Server Nodes Spec Sheet. Spec Sheet REV A.25, CISCO SYSTEMS.
Four-Faith (2022). 5Ghz WiFi Router Range Standard. [Online]; acessado 20/12/2023, disponível em [link].
ITU-R (2015). IMT Traffic Estimates for the years 2020 to 2030. M.2370-0, International Telecommunication Union.
Jia, Y., Wu, C., Li, Z., Le, F., and Liu, A. (2018). Online Scaling of NFV Service Chains Across Geo-Distributed Datacenters. IEEE/ACM Trans. Netw., 26(2):699–710.
Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. M. A., Dang, T. N., and Hong, C. S. (2020). Edge-Computing-Enabled Smart Cities: A Comprehensive Survey. IEEE Internet of Things Journal, 7(10):10200–10232.
Kurose, J. F. and Ross, K. W. (2021). Redes de Computadores e a Internet. Bookman, Brasil, 8 edition.
Long, X., Wu, J., and Chen, L. (2018). Energy-Efficient Offloading in Mobile Edge Computing with Edge-Cloud Collaboration. In Algorithms and Architectures for Parallel Processing, pages 460–475, Cham. Springer International Publishing.
Premsankar, G., Ghaddar, B., Di Francesco, M., and Verago, R. (2018). Efficient Placement of Edge Computing Devices for Vehicular Applications in Smart Cities. In NOMS - IEEE/IFIP Network Operations and Management Symposium. IEEE Press.
Queiroz, T. A. d., Canali, C., Iori, M., and Lancellotti, R. (2022). An Optimization View to the Design of Edge Computing Infrastructures for IoT Applications, pages 1–30. Springer International Publishing, Cham.
Rosendo, D., Silva, P., Simonin, M., Costan, A., and Antoniu, G. (2020). E2Clab: Exploring the Computing Continuum through Repeatable, Replicable and Reproducible Edge-to-Cloud Experiments. In 2020 IEEE International Conference on Cluster Computing (CLUSTER), pages 176–186.
Santos, J., Wauters, T., Volckaert, B., and De Turck, F. (2021). Towards end-to-end resource provisioning in fog computing over low power wide area networks. Journal of Network and Computer Applications, 175:102915.
Shah, A. F. M. S., Qasim, A. N., Karabulut, M. A., Ilhan, H., and Islam, M. B. (2021). Survey and performance evaluation of multiple access schemes for next-generation wireless communication systems. IEEE Access, 9:113428–113442.
Vailshery, L. S. (2023). Number of IoT connected devices worldwide 2019-2023, with forecasts to 2030. [Online]; acessado 20/12/2023, disponível em [link].
Published
2024-05-20
How to Cite
ARAÚJO, Samuel Moreira Abreu; MOREIRA, Mayron César de Oliveira; MATEUS, Geraldo Robson.
Resource Allocation in Edge and Cloud Computing to Serve IoT Devices: An Analysis Towards 6G. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 42. , 2024, Niterói/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 225-238.
ISSN 2177-9384.
DOI: https://doi.org/10.5753/sbrc.2024.1307.
