QoS-aware Optimal Deployment of LoRa Gateways in UAV-enabled LoRaWANs

  • William T. Pires-Jr UFG
  • Daniel C. da Silva UFG
  • Rogério S. Silva UFG / IFG
  • Leizer de L. Pinto UFG
  • Antonio Oliveira-Jr UFG / Fraunhofer Portugal AICOS
  • Mohammad J. Abdel-Rahman Princess Sumaya University for Technology / Virginia Tech
  • Kleber V. Cardoso UFG

Resumo


Employing flying gateways such as Unmanned Aerial Vehicles (UAVs) is an attractive approach to providing fast and effective densification for wireless access networks. Flying gateways as UAVs can solve performance issues of different applications, including those involving Internet of Things (IoT) devices. On the other hand, traditional mobile network operators need solutions for integrating IoT technologies such as Long Range Wide Area Network (LoRaWAN) with their 3rd Generation Partnership Project (3GPP) infrastructure. In this paper, we have associated Quality of Service (QoS) parameters from the non-3GPP Long Range (LoRa) technology to the 3GPP-defined network slicing. To ensure the QoS of the IoT devices, i.e., the slices QoS requirements, we have formulated an optimization problem to obtain the minimum number of UAVs and their positions and consider the interference reduction. We also have introduced three optimization strategies for the problem: (i) bi-objective focusing on minimizing the number of UAVs, (ii) bi-objective focusing on the distribution of devices between Spreading Factor (SF) configurations, and (iii) mono-objective to minimize the number of UAVs, used as a baseline. We have evaluated our proposal through analytical modeling and simulations using Network Simulator 3 (ns-3), in which we confirm the QoS assurance and interference reduction.

Referências

Almeida, E. N., Campos, R., and Ricardo, M. (2022). Traffic-Aware UAV Placement using a Generalizable Deep Reinforcement Learning Methodology. In Proc. IEEE Int. Symp. Comput. Commun. (ISCC), pages 1–6.

Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M., Maher, S. J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M. E., Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner, M., Vigerske, S., Wegscheider, F., Wellner, P., Weninger, D., and Witzig, J. (2021). The SCIP Optimization Suite 8.0. Technical report, Optimization Online.

Brazil (2017). General Requirements for Unmanned Aircraft for Civil Use. [link].

Dawaliby, S., Bradai, A., and Pousset, Y. (2019). Adaptive dynamic network slicing in LoRa networks. Future Generation Computer Systems, 98:697–707.

Dawaliby, S., Bradai, A., and Pousset, Y. (2021). Joint slice-based spreading factor and transmission power optimization in LoRa smart city networks. Internet of Things, 14. 100121.

Delafontaine, V., Schiano, F., Cocco, G., Rusu, A., and Floreano, D. (2020). Drone-aided localization in lora iot networks. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 286–292.

Europe (2019). The rules and procedures for the operation of unmanned aircraft. [link].

Finnegan, J., Farrell, R., and Brown, S. (2020). Analysis and Enhancement of the LoRaWAN Adaptive Data Rate Scheme. IEEE Internet Things J., 7(8):7171–7180.

Kishk, M., Bader, A., and Alouini, M.-S. (2020). Aerial Base Station Deployment in 6G Cellular Networks Using Tethered Drones: The Mobility and Endurance Tradeoff. IEEE Veh. Technol. Mag., 15(4):103–111.

Lee, D., Zhou, S., Zhong, X., Niu, Z., Zhou, X., and Zhang, H. (2014). Spatial modeling of the traffic density in cellular networks. IEEE Wireless Commun., 21(1):80–88.

Lodhi, M. A., Wang, L., and Farhad, A. (2022). Nd-adr: Nondestructive adaptive data rate for lorawan internet of things. Int. J. Commun. Syst., 35(9):e5136.

Magrin, D., Centenaro, M., and Vangelista, L. (2017). Performance evaluation of lora networks in a smart city scenario. In Proc. IEEE Int. Conf. Comm. (ICC), pages 1–7.

Mahmood, M., Koc, A., and Le-Ngoc, T. (2022). PSO-based joint UAV positioning and hybrid precoding in UAV-assisted massive MIMO systems. In Proc. IEEE Veh. Technol. Conf. (VTC), pages 1–6.

Marchese, M., Moheddine, A., and Patrone, F. (2019). IoT and UAV Integration in 5G Hybrid Terrestrial-Satellite Networks. Sensors, 19(17).

Mardi, F. Z., Bagaa, M., Hadjadj-Aoul, Y., and Benamar, N. (2022). An Efficient Allocation System for Centralized Network Slicing in LoRaWAN. In Proc. Int. Wirel. Commun. Mob. Comput. Conf. (IWCMC), pages 806–811.

Shen, H., Wang, T., Heng, Y., and Bai, G. (2023). Joint Resource Slicing and Vehicle Association for Drone-Assisted Vehicular Networks. Drones, 7(8):1–24.

Silva, R. S., Pires-Jr, W. T., Correa, S. L., Oliveira-Jr, A. C., and Cardoso, K. V. (2023). Dynamic resources allocation in non-3GPP IoT networks involving UAVs. In Proc. IEEE Veh. Technol. Conf. (VTC), pages 1–5.

Tellache, A., Mekrache, A., Bradai, A., Boussaha, R., and Pousset, Y. (2022). Deep Reinforcement Learning based Resource Allocation in Dense Sliced LoRaWAN Networks. In Proc. IEEE Int. Conf. Consum. Electron. (ICCE), pages 1–6.

Van, T. P. and Trung, N. N. (2021). Collaborative Edge Processing by mmWave Access Providing UAVs. In Proc. IEEE Wirel. Microw. Tech. Conf. (WAMICON), pages 1–5.
Publicado
20/05/2024
PIRES-JR, William T.; SILVA, Daniel C. da; SILVA, Rogério S.; PINTO, Leizer de L.; OLIVEIRA-JR, Antonio; ABDEL-RAHMAN, Mohammad J.; CARDOSO, Kleber V.. QoS-aware Optimal Deployment of LoRa Gateways in UAV-enabled LoRaWANs. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 42. , 2024, Niterói/RJ. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024 . p. 574-587. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2024.1443.

Artigos mais lidos do(s) mesmo(s) autor(es)

<< < 1 2 3