Controlador desacoplado livre de modelo para caminhada de robôs humanoides

  • Maria Tejada-Begazo UNESP / UNICAMP
  • Esther Luna Colombini UNICAMP
  • Alexandre da Silva Simões UNESP

Abstract


Controlling the movements of robots designed to work with tools and in environments made for humans has proven to be a challenging task. This difficulty has stimulated the investigation of new control methods independent of the robot’s dynamic model. Marta’s humanoid robot, designed and built by the workgroup, has different constructive characteristics: tiny feet, articulated toes, and a spherical joint at the waist. The present work considers the architecture of this robot, which presents a model-free controller for walking humanoid robots composed of two decoupled blocks: i) a classic controller for the spheric joint that focuses on the stability of the robot, and ii) a walk trajectory controller based on truncated Fourier series with parameters adjusted by genetic algorithm. The results show that the mechanical architecture and the decoupled control strategy can provide additional robustness when walking bipedal robots compared to conventional techniques.

Keywords: Robot humanoid, Genetic algorithm, Bipedal locomotion

References

Abedi, E., Alamirpour, P., and Mirshahvalad, R. (2017). Control humanoid robot using intelligent optimization algorithms fusion with fourier series. In 2017 9th Int. Conf. on Comp. Intelligence and Com. Networks (CICN), pages 181-185. IEEE.

Coros, S., Beaudoin, P., and Van de Panne, M. (2010). Generalized biped walking control. ACM Transactions on Graphics (TOG), 29(4):1-9.

Figueroa, A. L. and Meggiolaro, M. A. (2016). Modelagem e otimização por algoritmos genéticos de padrões de marcha quase-estática de robôs bípedes planos. Master's thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro.

GASI (2022). Grupo de Automação e Sistemas Integráveis. Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp). http://www.sorocaba.unesp.br/gasi. Acesso em 14/08/2022.

Katoh, R. and Mori, M. (1984). Control method of biped locomotion giving asymptotic stability of trajectory. Automatica, 20(4):405-414.

LaRoCS (2022). Laboratório de Robótica e Sistemas Cognitivos. Universidade Estadual de Campinas. https://larocs.ic.unicamp.br/. Acesso em 14/08/2022.

Maximo, M. R., Colombini, E. L., and Ribeiro, C. H. (2017). Stable and fast model-free walk with arms movement for humanoid robots. International Journal of Advanced Robotic Systems, 14(3):1729881416675135.

Mohamed, S. A., Awad, M. I., and Maged, S. A. (2020). Online gait generation for nao humanoid robot using model predictive control. In 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), pages 205-209. IEEE.

Oxford (2015). Oxford Advanced Learner's Dictionary. Oxford University Press, 9th edition.

Rapetti, L., Tirupachuri, Y., Darvish, K., Latella, C., and Pucci, D. (2019). Model-based real-time motion tracking using dynamical inverse kinematics. arXiv preprint arXiv:1909.07669.

Rose, J. and Gamble, J. G. (1994). Human walking. Williams & Wilkins.

Salehi, M., Azarkaman, M., and Aghaabbasloo, M. (2018). Optimized joint trajectory model with customized genetic algorithm for biped robot walk. Journal of Computer & Robotics, 11(1):21-29.

Sánchez-Lacuesta, J., Prat, J., Hoyos, J. V., Viosca, E., Soler-Gracia, C., Comín, M., Lafuente, R., and Cortés, A. (1993). Biomecánica de la marcha humana normal y patológica. Valencia: Instituto de Biomecánica de Valencia, 1.

Sari, W. P., Dewanto, R. S., and Pramadihanto, D. (2019). Kinematic and dynamic modelling of"t-flow"humanoid robot for ascending and descending stair. In 2019 International Electronics Symposium (IES), pages 82-87. IEEE.

Sayari, M. A., Masmoudi, N., and Zaier, R. (2019). Bio-inspired cpg based locomotion for humanoid robot application. In International Conference Design and Modeling of Mechanical Systems, pages 910-918. Springer.

Shafii, N., Aslani, S., Nezami, O. M., and Shiry, S. (2009a). Evolution of biped walking using truncated fourier series and particle swarm optimization. In Robot Soccer World Cup, pages 344-354. Springer.

Shafii, N., Khorsandian, A., Abdolmaleki, A., and Jozi, B. (2009b). An optimized gait generator based on fourier series towards fast and robust biped locomotion involving arms swing. In Automation and Logistics, 2009. ICAL'09. IEEE International Conference on, pages 2018-2023. IEEE.

Shafii, N., Reis, L. P., and Lau, N. (2010). Biped walking using coronal and sagittal movements based on truncated fourier series. In Robot Soccer World Cup, pages 324-335. Springer.

Villagra, J. and Balaguer, C. (2011). A model-free approach for accurate joint motion control in humanoid locomotion. Int. Journal of Humanoid Robotics, 8(01):27-46.

Villela, L. F. C. and Colombini, E. L. (2017). Humanoid robot walking optimization using genetic algorithms. Relatório técnico. Instituto de Computação. Unicamp, julho.

Yang, L., Chew, C.-M., Zielinska, T., and Poo, A.-N. (2007). A uniform biped gait generator with offline optimization and online adjustable parameters. Robotica, 25(5):549-565.
Published
2022-10-18
TEJADA-BEGAZO, Maria; COLOMBINI, Esther Luna; SIMÕES, Alexandre da Silva. Controlador desacoplado livre de modelo para caminhada de robôs humanoides. In: GRADUATE WORKS CONTEST IN ROBOTICS - CTDR (MSC) - BRAZILIAN SYMPOSIUM OF ROBOTICS & LATIN AMERICAN ROBOTICS SYMPOSIUM (SBR/LARS), 14. , 2022, São Bernardo do Campo/SP. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 49-60. DOI: https://doi.org/10.5753/wtdr_ctdr.2022.226897.