Incremental detection of misbehavior in VANETs

Abstract


Position forgery in VANETs may cause disastrous effects on traffic. This work presents the DISMISS-BSM, an algorithm that is able to detect this kind of misbehavior in C-ITS enviroment, resorting to two new features and a new way of grouping the messages in sliding analysis windows of incremental size, combining agility and efficiency in the misbehavior detection. To evaluate the performance, five machine learning models were used, showing remarkable results in detecting random offset type attacks, surpassing other works in the area, and the cost-benefit of the Decision Tree model, with an average training and inference time of, 47.617 and 0.085 sec, respectively.
Keywords: VANETs, misbehavior, machine learning

References

Committee, V. C. T. (2020). V2X Communications Message Set Dictionary.

De Carvalho Bertoli, G., Pereira Junior, L. A., Saotome, O., Dos Santos, A. L., Verri, F., A. N., Marcondes, C. A. C., Barbieri, S., Rodrigues, M. S., and Parente De Oliveira, J. M. (2021). An end-to-end framework for machine learning-based network intrusion detection system. IEEE Access, 9:106790–106805.

Ercan, S., Ayaida, M., and Messai, N. (2021). New features for position falsification detection in vanets using machine learning. In ICC 2021 - IEEE International Conference on Communications, pages 1–6.

Ercan, S., Ayaida, M., and Messai, N. (2022). Misbehavior detection for position falsification attacks in vanets using machine learning. IEEE Access, 10:1893–1904.

Gohar, A. and Nencioni, G. (2021). The role of 5g technologies in a smart city: The case for intelligent transportation system. Sustainability, 13(9).

Grover, H., Alladi, T., Chamola, V., Singh, D., and Choo, K.-K. R. (2021). Edge computing and deep learning enabled secure multitier network for internet of vehicles. IEEE Internet of Things Journal, 8(19):14787–14796.

Gyawali, S. and Qian, Y. (2019). Misbehavior detection using machine learning in vehicular communication networks. In ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pages 1–6.

Hawlader, F., Boualouache, A., Faye, S., and Engel, T. (2021). Intelligent misbehavior detection system for detecting false position attacks in vehicular networks. In 2021 IEEE International Conference on Communications Workshops (ICC Workshops).

IEEE (2016). Ieee standard for wireless access in vehicular environments–security services for applications and management messages. IEEE Std 1609.2-2016 (Revision of IEEE Std 1609.2-2013), pages 1–240.

Kamoi, R. N., Junior, L. A. P., Verri, F. A. N., Marcondes, C. A. C., Ferreira, C. H. G., Meneguette, R. I., and Cunha, A. M. D. (2021). Platoon grouping network offloading mechanism for vanets. IEEE Access, 9:53936–53951.

Sharma, A. and Jaekel, A. (2022). Machine learning based misbehaviour detection in vanet using consecutive bsm approach. IEEE Open Journal of Vehicular Technology.

So, S., Petit, J., and Starobinski, D. (2019). Physical layer plausibility checks for misbehavior detection in v2x networks. In Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, WiSec ’19, page 84–93, New York, NY, USA. Association for Computing Machinery.

So, S., Sharma, P., and Petit, J. (2018). Integrating plausibility checks and machine learning for misbehavior detection in vanet. In 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pages 564–571.

Uprety, A., Rawat, D. B., and Li, J. (2021). Privacy preserving misbehavior detection in iov using federated machine learning. In 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC), pages 1–6.

van der Heijden, R. W., Dietzel, S., Leinmuller, T., and Kargl, F. (2019). Survey on misbehavior detection in cooperative intelligent transportation systems. IEEE Communications Surveys Tutorials, 21(1):779–811.

van der Heijden, R. W., Lukaseder, T., and Kargl, F. (2018). Veremi: A dataset for comparable evaluation of misbehavior detection in vanets. In Beyah, R., Chang, B., Li, Y., and Zhu, S., editors, Security and Privacy in Communication Networks, pages 318–337, Cham. Springer International Publishing.
Published
2022-09-12
DUTRA, Fernando; BONFIM, Kenniston; TRAVAGINI, Carlos; MENEGUETTE, Rodolfo I.; SANTOS, Aldri; PEREIRA, Lourenço Alves. Incremental detection of misbehavior in VANETs. In: BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 22. , 2022, Santa Maria. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2022 . p. 125-138. DOI: https://doi.org/10.5753/sbseg.2022.225164.

Most read articles by the same author(s)

1 2 3 > >>