DroidAutoML: An AutoML Tool for the Android Malware Detection Domain
Abstract
In this work we present DroidAutoML, an AutoML tool for generating models for Android malware detection. From an input dataset and a data pipeline of four stages, our tool automatically generates optimized predictive models. Our initial findings show DroidAutoML generates very good models, reaching recall levels of 95%, for instance.
Keywords:
AutoML, Android Malware Detection, Dataset, Tool
References
Cai, L., Li, Y., and Xiong, Z. (2021). JOWMDroid: Android malware detection based on feature weighting with joint optimization of weight-mapping and classifier parameters. Computers & Security, 100:102086.
Karmaker (“Santu”), S. K., Hassan, M. M., Smith, M. J., Xu, L., Zhai, C., and Veeramachaneni, K. (2021). Automl to date and beyond: Challenges and opportunities. ACM Comp. Sur., 54(8).
Lee, D. J.-L. and Macke, S. (2020). A human-in-the-loop perspective on automl: Milestones and the road ahead. IEEE Data Engineering Bulletin.
Martin, R. C., Grenning, J., Brown, S., Henney, K., and Gorman, J. (2017). Clean architecture: a craftsman’s guide to software structure and design. Number 31. Prentice Hall.
Moutaz, A. (2020). Automated malware detection in mobile app stores based on robust feature generation. Electronics, 9:435.
Sagi, O. and Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1249.
Sharma, T. and Rattan, D. (2021). Malicious application detection in android—a systematic literature review. Computer Science Review, 40:100373.
Shi, X., Wong, Y. D., Chai, C., and Li, M. Z.-F. (2021). An automated machine learning (automl) method of risk prediction for decision-making of autonomous vehicles. IEEE TITS, 22(11):7145.
Siqueira, G., Rodrigues, G., Kreutz, D., and Feitosa, E. (2021). QuickAutoML: Uma ferramenta para treinamento automatizado de modelos de aprendizado de máquina. In WRSeg21.
Sun, L., Li, Z., Yan, Q., Srisa-an, W., and Pan, Y. (2016). SigPID: significant permission identification for android malware detection. In 11th MALWARE, pages 1–8.
Xin, D., Wu, E. Y., Lee, D. J.-L., Salehi, N., and Parameswaran, A. (2021). Whither automl - understanding the role of automation in machine learning workflows. In Proceedings of the CHI.
Yan, C., Zhang, Y., Zhang, Q., Yang, Y., Jiang, X., Yang, Y., and Wang, B. (2022). Privacy-preserving online automl for domain-specific face detection. In IEEE CVF, pages 4134–4144.
Karmaker (“Santu”), S. K., Hassan, M. M., Smith, M. J., Xu, L., Zhai, C., and Veeramachaneni, K. (2021). Automl to date and beyond: Challenges and opportunities. ACM Comp. Sur., 54(8).
Lee, D. J.-L. and Macke, S. (2020). A human-in-the-loop perspective on automl: Milestones and the road ahead. IEEE Data Engineering Bulletin.
Martin, R. C., Grenning, J., Brown, S., Henney, K., and Gorman, J. (2017). Clean architecture: a craftsman’s guide to software structure and design. Number 31. Prentice Hall.
Moutaz, A. (2020). Automated malware detection in mobile app stores based on robust feature generation. Electronics, 9:435.
Sagi, O. and Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1249.
Sharma, T. and Rattan, D. (2021). Malicious application detection in android—a systematic literature review. Computer Science Review, 40:100373.
Shi, X., Wong, Y. D., Chai, C., and Li, M. Z.-F. (2021). An automated machine learning (automl) method of risk prediction for decision-making of autonomous vehicles. IEEE TITS, 22(11):7145.
Siqueira, G., Rodrigues, G., Kreutz, D., and Feitosa, E. (2021). QuickAutoML: Uma ferramenta para treinamento automatizado de modelos de aprendizado de máquina. In WRSeg21.
Sun, L., Li, Z., Yan, Q., Srisa-an, W., and Pan, Y. (2016). SigPID: significant permission identification for android malware detection. In 11th MALWARE, pages 1–8.
Xin, D., Wu, E. Y., Lee, D. J.-L., Salehi, N., and Parameswaran, A. (2021). Whither automl - understanding the role of automation in machine learning workflows. In Proceedings of the CHI.
Yan, C., Zhang, Y., Zhang, Q., Yang, Y., Jiang, X., Yang, Y., and Wang, B. (2022). Privacy-preserving online automl for domain-specific face detection. In IEEE CVF, pages 4134–4144.
Published
2022-09-12
How to Cite
ASSOLIN, Joner; KREUTZ, Diego; SIQUEIRA, Guilherme; ROCHA, Vanderson; MIERS, Charles; MANSILHA, Rodrigo; FEITOSA, Eduardo.
DroidAutoML: An AutoML Tool for the Android Malware Detection Domain. In: TOOLS - BRAZILIAN SYMPOSIUM ON CYBERSECURITY (SBSEG), 22. , 2022, Santa Maria.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2022
.
p. 135-142.
DOI: https://doi.org/10.5753/sbseg_estendido.2022.227037.
