Text Mining for Client Management in Telecom Companies
Abstract
In a competitive market, adopting suitable business strategies is essential to satisfice and make clients loyal. This research aimed to identify profiles of clients that kept loyal to a telecom company and users that cancelled the service. We have considered reports from occurrences of the phone attendance service, registered to a private database, granted for this research. We have applied text mining for classification of occurrences, to avoid cancellation, and extraction of association rules, to understand the reasons that lead users to cancel the service. In the experienced conditions, the algorithms could predict cancellations with 97,02% accuracy. Besides, the most representative attributes for each class were extracted, providing a framework for strategic decision-making.
References
Angelo, C. F. D., & Giangrande, V. (1999). Marketing de relacionamento no varejo. São Paulo: Atlas, 10.
Swift, R. (2001). Customer Relationship Management-O Revolucionário Marketing de Relacionamentos com Clientes.
Kloter, P., & Armstrong, G. (2003). Fundamentos de marketing. México: 6ta Edición Prentice Hall.
Oliveira, C. P., Leão, M. C. S., & Costa, R. A. T. (2016). Gestão do Relacionamento com os clientes: Um Estudo na Agência Beira Rio do Banco do Brasil. Revista de Administração Geral, 1(2), 21-40.
Turban, E., Sharda, R., Aronson, J. E., & King, D. (2009). Business Intelligence: um enfoque gerencial para a inteligência do negócio. Bookman Editora.
Turban, E., Leidner, D., Mclean, E., & Wetherbe, J. (2010). Tecnologia da Informação para Gestão-: Transformando os Negócios na Economia Digital. Bookman.
Beránková, M. H., & Houska, M. (2011). Data, information and knowledge in agricultural decision-making. AGRIS on-line Papers in Economics and Informatics, 3(2), 74.
Piatetsky-Shapiro, G. (1996). Advances in knowledge discovery and data mining (Vol. 21). U. M. Fayyad, P. Smyth, & R. Uthurusamy (Eds.). Menlo Park: AAAI press.
Gupta, V., & Lehal, G. S. (2009). A survey of text mining techniques and applications. Journal of emerging technologies in web intelligence, 1(1), 60-76.
Hearst, M. A. (1999, June). Untangling text data mining. In Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics (pp. 3- 10). Association for Computational Linguistics.
Weiss, S. M., Indurkhya, N., Zhang, T., & Damerau, F. (2010). Text mining: predictive methods for analyzing unstructured information. Springer Science & Business Media.
Ordenes, F. V., Theodoulidis, B., Burton, J., Gruber, T., & Zaki, M. (2014). Analyzing Customer Experience Feedback Using Text Mining A Linguistics-Based Approach. Journal of Service Research, 1094670514524625.
Zhong, N., Li, Y., & Wu, S. T. (2012). Effective pattern discovery for text mining. IEEE transactions on knowledge and data engineering, 24(1), 30-44.
de Barcelos, Y. T., Gosling, M., de Freitas Coelho, M., & Resende, M. P. (2014). Ferramenta de visualização de dados e processamento de texto: análise de reviews de viajantes no Tripadvisor. REAVI-Revista Eletrônica do Alto Vale do Itajaí, 3(4), 25-39.
Fatudimu, I. T., Uwadia, C. O., & Ayo, C. K. (2012). Improving Customer Relationship Management through Integrated Mining of Heterogeneous Data. International Journal of Computer Theory and Engineering, 4(4), 518.
Jain, A. K., Murty M. N., & Flynn, P. J. (1999). Data clustering: a review, ACM Computing Surveys, vol. 31, no. 3, pp. 264–323.
Takeuchi, H., & Yamaguchi, T. (2014). Text mining of business-oriented conversations at a call center. In Data mining for service (pp. 111-129). Springer Berlin Heidelberg.
Cailliau, F., & Cavet, A. (2013, March). Mining automatic speech transcripts for the retrieval of problematic calls. In International Conference on Intelligent Text Processing and Computational Linguistics (pp. 83-95). Springer Berlin Heidelberg.
Rossi, R. G., & Rezende, S. O. (2011a). Generating features from textual documents through association rules. Anais do Encontro Nacional de Inteligência Artificial. SBC. São Carlos – SP, Brasil.
Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
Rossi, R. G., & Rezende, S. O. (2011b). Building a topic hierarchy using the bag-of-related-words representation. In Proceedings of the 11th ACM symposium on Document engineering (pp. 195-204). ACM.
Agrawal, R., Imieliński, T., & Swami, A. (1993, June). Mining association rules between sets of items in large databases. In Acm sigmod record (Vol. 22, No. 2, pp. 207-216). ACM.
Sias, C. C. (2005). O desempenho dos atributos de qualidade em serviços de conectividade de redes: o caso de uma operadora de telecomunicações. Mestrado - [s.l.] Universidade Federal do Rio Grande do Sul.
Carvalho, F. C. A. (2012). Gestão do Conhecimento. São Paulo. Person.
Slack, N., Chamners, S., Harland, C., Harrison, A. & Johnston, R. (1999). Administração da Produção. São Paulo. Atlas.
Wallach, H. M. (2006). Topic modeling: beyond bag-ofwords. Proceedings of the 23rd international conference on Machine learning (pp. 977-984). ACM.
Silva, F. D., & ZAMBON, M. S. (2006). Gestão do relacionamento com o cliente. São Paulo: Thomson, 191.
Idris, A., Rizwan, M., & Khan, A. (2012). Churn prediction in telecom using Random Forest and PSO based data balancing in combination with various feature selection strategies. Computers & Electrical Engineering, 38(6), 1808-1819.
Lima, F., Oliveira, H., & Salvador, L. (2015). Um Método Não Supervisionado para o Povoamento de Ontologias a partir de Fontes Textuais na Web.
