Deep Learning for Appearance Defect Inspection in Laptops: A Model Comparison
Abstract
Daily, thousands of laptops pass through repair centers of electronic device manufacturers. During visual inspections, technicians manually identify potential cosmetic or structural damage, documenting findings with photos or videos. This process safeguards the repair center against claims related to damage incurred in custody. However, the manual approach is time-consuming and prone to human error. To address this, we propose a computer vision model to automatically detect appearance defects in laptops. Experiments were conducted using five deep neural networks: Mask R-CNN, SSD, Swin Transformer, YOLOv5, and YOLOv10. Our best-performing model achieved a mean Average Precision (mAP) of 70.2%, showcasing the viability of such application.References
Alves, D., Farias, V., Chaves, I., Chao, R., Madeiro, J. P., Gomes, J. P., and Machado, J. (2022). Detecting customer induced damages in motherboards with deep neural networks. In 2022 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L. (2021). Review of deep learning: concepts, cnn architectures, challenges, applications, future directions. Journal of big Data, 8:1–74.
Cabral, L., Farias, V., Sena, L., Chaves, I., Pordeus, J. P., Santiago, J. P., Sá, D., Machado, J., and Madeiro, J. P. (2023). An active learning approach for detecting customer induced damages in motherboards with deep neural networks. Learning & Nonlinear Models, 21(2):29–42.
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020). End-to-end object detection with transformers. In European conference on computer vision, pages 213–229. Springer.
Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin, D. (2019). Mmdetection: Open mmlab detection toolbox and benchmark.
He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). Yolo by ultralytics.
Lin, H.-I. and Landge, R. R. (2021). Comparison of deep learning algorithms on defect detection on metal laptop cases. In 2021 International Automatic Control Conference (CACS), pages 1–5. IEEE.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 21–37. Springer.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision, pages 10012–10022.
Redmon, J. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, volume abs/1506.02640.
Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6):1137–1149.
Santiago, J. P., Farias, V., Sena, L., Gomes, J. P. P., and Machado, J. (2024). Real-time detection of customer-induced damage in printed circuit boards using mobile devices and YOLO detectors. Learning & Nonlinear Models, 22(2):17–31.
Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Stevens, E., Antiga, L., and Viehmann, T. (2020). Deep Learning with PyTorch. Manning Publications.
Verma, R., Nagar, V., and Mahapatra, S. (2021). Introduction to supervised learning. Data Analytics in Bioinformatics: A Machine Learning Perspective, pages 1–34.
Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., and Ding, G. (2024). Yolov10: Real-time end-to-end object detection. arXiv preprint arXiv:2405.14458.
Wang, C.-Y., Liao, H.-Y. M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., and Yeh, I.-H. (2020). Cspnet: A new backbone that can enhance learning capability of cnn. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 390–391.
Wang, J., Dai, H., Chen, T., Liu, H., Zhang, X., Zhong, Q., and Lu, R. (2023). Toward surface defect detection in electronics manufacturing by an accurate and lightweight yolo-style object detector. Scientific Reports, 13(1):7062.
Xiao, Y., Tian, Z., Yu, J., Zhang, Y., Liu, S., Du, S., and Lan, X. (2020). A review of object detection based on deep learning. Multimedia Tools and Applications, 79:23729–23791.
Yang, Z., Yan, X., Yu, L., and Zhu, H. (2023). Laptop appearance defect detection based on improved yolov5 algorithm. In 2023 International Conference on Computer Graphics and Image Processing (CGIP), pages 13–18. IEEE.
Zhang, J., Li, Z., and Zhao, Y. (2023). Defect detection of laptop appearance based on improved multi-scale normalizing flows. In 2023 38th Youth Academic Annual Conference of Chinese Association of Automation (YAC), pages 311–316. IEEE.
Zhu, H., Kang, Y., Zhao, Y., Yan, X., and Zhang, J. (2022). Anomaly detection for surface of laptop computer based on patchcore gan algorithm. In 2022 41st Chinese Control Conference (CCC), pages 5854–5858. IEEE.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L. (2021). Review of deep learning: concepts, cnn architectures, challenges, applications, future directions. Journal of big Data, 8:1–74.
Cabral, L., Farias, V., Sena, L., Chaves, I., Pordeus, J. P., Santiago, J. P., Sá, D., Machado, J., and Madeiro, J. P. (2023). An active learning approach for detecting customer induced damages in motherboards with deep neural networks. Learning & Nonlinear Models, 21(2):29–42.
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020). End-to-end object detection with transformers. In European conference on computer vision, pages 213–229. Springer.
Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin, D. (2019). Mmdetection: Open mmlab detection toolbox and benchmark.
He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). Yolo by ultralytics.
Lin, H.-I. and Landge, R. R. (2021). Comparison of deep learning algorithms on defect detection on metal laptop cases. In 2021 International Automatic Control Conference (CACS), pages 1–5. IEEE.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 21–37. Springer.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision, pages 10012–10022.
Redmon, J. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, volume abs/1506.02640.
Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6):1137–1149.
Santiago, J. P., Farias, V., Sena, L., Gomes, J. P. P., and Machado, J. (2024). Real-time detection of customer-induced damage in printed circuit boards using mobile devices and YOLO detectors. Learning & Nonlinear Models, 22(2):17–31.
Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Stevens, E., Antiga, L., and Viehmann, T. (2020). Deep Learning with PyTorch. Manning Publications.
Verma, R., Nagar, V., and Mahapatra, S. (2021). Introduction to supervised learning. Data Analytics in Bioinformatics: A Machine Learning Perspective, pages 1–34.
Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., and Ding, G. (2024). Yolov10: Real-time end-to-end object detection. arXiv preprint arXiv:2405.14458.
Wang, C.-Y., Liao, H.-Y. M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., and Yeh, I.-H. (2020). Cspnet: A new backbone that can enhance learning capability of cnn. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 390–391.
Wang, J., Dai, H., Chen, T., Liu, H., Zhang, X., Zhong, Q., and Lu, R. (2023). Toward surface defect detection in electronics manufacturing by an accurate and lightweight yolo-style object detector. Scientific Reports, 13(1):7062.
Xiao, Y., Tian, Z., Yu, J., Zhang, Y., Liu, S., Du, S., and Lan, X. (2020). A review of object detection based on deep learning. Multimedia Tools and Applications, 79:23729–23791.
Yang, Z., Yan, X., Yu, L., and Zhu, H. (2023). Laptop appearance defect detection based on improved yolov5 algorithm. In 2023 International Conference on Computer Graphics and Image Processing (CGIP), pages 13–18. IEEE.
Zhang, J., Li, Z., and Zhao, Y. (2023). Defect detection of laptop appearance based on improved multi-scale normalizing flows. In 2023 38th Youth Academic Annual Conference of Chinese Association of Automation (YAC), pages 311–316. IEEE.
Zhu, H., Kang, Y., Zhao, Y., Yan, X., and Zhang, J. (2022). Anomaly detection for surface of laptop computer based on patchcore gan algorithm. In 2022 41st Chinese Control Conference (CCC), pages 5854–5858. IEEE.
Published
2025-07-20
How to Cite
SANTIAGO, João P. O.; CABRAL, Lucas; SENA, Lucas; C.NETO, Joaquim Bento; LENON, Yuri; MACHADO, Javam.
Deep Learning for Appearance Defect Inspection in Laptops: A Model Comparison. In: INTEGRATED SOFTWARE AND HARDWARE SEMINAR (SEMISH), 52. , 2025, Maceió/AL.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 25-36.
ISSN 2595-6205.
DOI: https://doi.org/10.5753/semish.2025.7056.
