Requirements Guidance Template for Strategic Decision-Making in Artificial Intelligence Projects in Public Organizations

  • Henrique P. P. Costa ITA
  • Johnny Marques ITA

Abstract


The paper highlights the need for a template to align business objectives and AI system requirements in public organizations. This template, called StrategIA, aims to facilitate strategic decision-making and ensure that artificial intelligence (AI)-based solutions generate value for the public sector. StrategIA is a model based on frameworks such as PMBOK 7, PerspecML, and CRISPDM, designed to guide AI projects in public administration. It is structured into nine main components: (i) Business Objective, (ii) Business Contributions, (iii) Deliverables, (iv) Success Indicators, (v) Structure, (vi) Investment Management, (vii) Deadline Management, (viii) Risk Management, and (ix) Communication Management. Each component is accompanied by strategic guidelines and guiding questions, which assist in project analysis and definition.

References

Alves, A. P. S., Kalinowski, M., Mendez, D., Villamizar, H., Azevedo, K., Escovedo, T., and Lopes, H. (2024). Industrial practices of requirements engineering for ml-enabled systems in brazil.

Berryhill, J., Kok Heang, K., Clogher, R., and McBride, K. (2019). Hello, world: Artificial intelligence and its use in the public sector. OECD Working Papers on Public Governance 36, OECD Publishing, Paris.

Campbell, C. (2010). The One-Page Project Manager for IT Projects: Communicate and Manage Any Project With A Single Sheet of Paper. Wiley.

da Silva, D. A., Basso, E. W., and Marques, J. C. (2024). Principais características para o uso responsável da ia. In Anais da 1ª Conferência Latino-Americana de Ética em Inteligência Artificial, pages 125–128, Porto Alegre, RS, Brasil. SBC.

Einhorn, F., Marnewick, C., and Meredith, J. (2019). Achieving strategic benefits from business it projects: The critical importance of using the business case across the entire project lifetime. International Journal of Project Management, 37(8):989–1002.

Gjorgjevikj, A., Mishev, K., Antovski, L., and Trajanov, D. (2023). Requirements engineering in machine learning projects. IEEE Access, 11:72186–72208.

Njanka, S. Q., Sandula, G., and Colomo-Palacios, R. (2021). It-business alignment: A systematic literature review. Procedia Computer Science, 181:333–340. CENTERIS 2020 - International Conference on ENTERprise Information Systems / ProjMAN 2020 - International Conference on Project MANagement / HCist 2020 - International Conference on Health and Social Care Information Systems and Technologies 2020, CENTERIS/ProjMAN/HCist 2020.

Project Management Institute (2021). A Guide to the Project Management Body of Knowledge (PMBOK Guide). Project Management Institute, Newtown Square, PA, 7 edition.

Sommerville, I. (2019). Engenharia de software. Pearson.

Vasconcelos, E. S. and Santos, F. A. d. (2024). Inteligência artificial na gestão pública brasileira: desafios e oportunidades para a eficiência governamental. OBSERVATÓRIO DE LA ECONOMÍA LATINOAMERICANA, 22(6):e5017.

Vasconcelos, K. and Marques, J. (2023). Um mapeamento sistemático da literatura sobre o processo decisório de investimentos de tecnologias da informação em organizações públicas. In Anais do XI Workshop de Computação Aplicada em Governo Eletrônico, pages 25–36, Porto Alegre, RS, Brasil. SBC.

Villamizar, H. and Kalinowski, M. (2024). Identifying concerns when specifying machine learning-enabled systems: A perspective-based approach. In Anais do XXIII Simpósio Brasileiro de Qualidade de Software, page 673–675, Porto Alegre, RS, Brasil. SBC.

Wirth, R. and Hipp, J. (2000). Crisp-dm: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining, volume 1, pages 29–39. Manchester.
Published
2025-07-20
COSTA, Henrique P. P.; MARQUES, Johnny. Requirements Guidance Template for Strategic Decision-Making in Artificial Intelligence Projects in Public Organizations. In: LATIN AMERICAN SYMPOSIUM ON DIGITAL GOVERNMENT (LASDIGOV), 12. , 2025, Maceió/AL. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 317-324. ISSN 2763-8723. DOI: https://doi.org/10.5753/lasdigov.2025.9059.

Most read articles by the same author(s)

1 2 3 4 > >>