Sentiment Analysis in Tweets Related to Deforestation of the Amazon Rainforest
Abstract
The Amazon Forest is being devastated at the fastest pace in recent years. In 2020, the Amazon registered the biggest deforestation of the decade. Although many works address the issue of deforestation, none of them focus on analyzing the sentiments of the Brazilian population regarding the issue. This work presents an analysis of the sentiments of the Brazilian population related to the deforestation of the Amazon rainforest through the text mining of Twitter and aims to understand how Brazilian users opine and dialogue about the deforestation of the Amazon rainforest. The results reveal that Brazilian users tend to react to events related to deforestation in the Amazon forest on Twiter and that most users have a negative sentiment about the topic, reaching peaks of approximately 60% of tweets in a given time.
References
Brito, K. d. S., Silva Filho, R. L. C., and Adeodato, P. J. L. (2021). A Systematic Review of Predicting Elections Based on Social Media Data: Research Challenges and Future Directions. IEEE Transactions on Computational Social Systems, 8(4):819–843.
Brum, P. V., Teixeira, M. C., Miranda, R., Vimieiro, R., Meira Jr, W., and Pappa, G. L. (2020). A characterization of portuguese tweets regarding the covid-19 pandemic. In Anais do VIII Symposium on Knowledge Discovery, Mining and Learning, pages 177–184. SBC.
Coutinho, V. M. d. M. S. and Malheiros, Y. (2020). Detecçao de mensagens homofóbicas em português no twitter usando análise de sentimentos. In Anais do IX Brazilian Workshop on Social Network Analysis and Mining, pages 1–12. SBC.
Euzebio, C., Agy, S., Jr., C. B., Porto, L., Alcarás, J. R., Martinez, A., and Ruiz, E. (2020). Statistical analysis of small twitter data collection to identify dengue outbreaks. In Anais do VIII Symposium on Knowledge Discovery, Mining and Learning, pages 17–24, Porto Alegre, RS, Brasil. SBC.
G1 (2019). Dia vira ‘noite’ em SP com frente fria e fumaça vinda de queimadas na região da Amazônia. Disponível em: https://glo.bo/3nZU2Bu. Acesso em: 28 de novembro de 2021.
INPE (2020). Monitoramento do território: Florestas. Disponível em: http://www.inpe.br/faq/index.php?pai=6. Acesso em: 28 de novembro de 2021.
Kalampokis, E., Tambouris, E., and Tarabanis, K. (2013). Understanding the predictive power of social media. Internet Research, 23(5):544–559.
Machado, L. (2019). O que se sabe sobre o ‘Dia do Fogo’, momento-chave das queimadas na Amazônia. Disponível em: https://www.bbc.com/portuguese/brasil-49453037. Acesso em: 28 de novembro de 2021.
Malagoli, L., Stancioli, J., Ferreira, C. H., Vasconcelos, M., da Silva, A. P. C., and Almeida, J. (2021). Caracterização do debate no twitter sobre a vacinação contra a covid-19 no brasil. In Anais do X Brazilian Workshop on Social Network Analysis and Mining, pages 55–66. SBC.
Misuraca, M., Forciniti, A., Scepi, G., and Spano, M. (2020). Sentiment Analysis for Education with R: packages, methods and practical applications. arXiv preprint arXiv:2005.12840.
Muniz, B., Fonseca, B., and Ribeiro, R. (2020). Governo Bolsonaro reduz multas em municípios onde desmatamento cresce. Disponível em: https://bit.ly/3HV65Il. Acesso em: 28 de novembro de 2021.
O’Leary, D. E. (2015). Twitter Mining for Discovery, Prediction and Causality: Applications and Methodologies. Intelligent Systems in Accounting, Finance and Management, 22(3):227–247.
Oliveira, E. (2020). Com recorde em maio, alertas de desmatamento na amazônia indicam que temporada pode ter devastação maior que a anterior. Disponível em: https://glo.bo/3D136KA. Acesso em: 28 de novembro de 2021.
Pereira, D. A. (2021). A survey of sentiment analysis in the Portuguese language. Artificial Intelligence Review, 54(2):1087–1115.
Silva, H., Andrade, E., Araújo, D., and Dantas, J. (2022). Análise de Sentimentos de Tweets Relacionados ao SUS Antes e Durante a Pandemia do COVID-19. IEEE Latin America Transactions, 20(1).
Silva Junior, C. H. L., Pessôa, A. C. M., Carvalho, N. S., Reis, J. B. C., Anderson, L. O., and Aragão, L. E. O. C. (2021). The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology Evolution, 5(2):144–145.
Thomas, C. D. (2010). Climate, climate change and range boundaries. Diversity and Distributions, 16(3):488–495.
