Análise de sentimento de tweets com foco em notícias

  • Paula Nascimento Universidade Federal do Rio de Janeiro
  • Rodrigo Aguas Universidade Federal do Rio de Janeiro
  • Débora de Lima Universidade Federal do Rio de Janeiro
  • Xiao Kong Universidade Federal do Rio de Janeiro
  • Bruno Osiek Universidade Federal do Rio de Janeiro
  • Geraldo Xexéo Universidade Federal do Rio de Janeiro
  • Jano de Souza Universidade Federal do Rio de Janeiro

Resumo


A curiosidade por saber o que as pessoas pensam e como se sentem em relação aos acontecimentos do dia a dia sempre existiu. Este trabalho tem por objetivo satisfazer essa necessidade e analisar se as pessoas reagem de forma positiva ou negativa em relação às notícias divulgadas na mídia. Para isso, foram selecionados 3 tópicos e, para cada um deles, informações publicadas no serviço de microblogging Twitter foram coletadas, analisadas e tiveram sua polaridade identificada. O experimento realizado utilizou classificadores de linguagem e, além de verificar qual a opinião da população em relação às notícias selecionadas, foi possível identificar dentre 3 modelos linguísticos distintos qual deles obteve melhor resultado ao classificar tweets.

Palavras-chave: Análise de Sentimentos, Twitter, Notícias

Referências

Achrekar, H., Gandhe, A., Lazarus, R., Yu, S., Liu, B. (2011). “Predicting Flu Trends using Twitter data”, Proceedings of 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 702 – 707.

Bollen, J., Pepe, A., and Mao, H. (2009). “Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena.”, Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 2011), 17-21 July 2011, Barcelona, Spain.

Brew, A., Greene, D., Archambault, D., and Cunningham, P. (2011). “Deriving Insights from National Happiness Indices.”, 2011 IEEE 11th International Conference On Data Mining Workshops (ICDMW), pp. 53 –60.

Davidov, D., Tsur, O., and Rappoport, A. (2010). “Enhanced sentiment learning using Twitter hashtags and smileys.”, Proceedings of the 23rd International Conference on Computational Linguistics: Posters, (Stroudsburg, PA, USA: Association for Computational Linguistics), pp. 241–249.

Golden, P. (2011). “Write here, write now.”. Disponível em [link].

Jiang, L., Yu, M., Zhou, M., Liu, X., and Zhao, T. (2011). “Target-dependent Twitter sentiment classification.”, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, (Stroudsburg, PA, USA: Association for Computational Linguistics), pp. 151–160.

Jurafsky, D., and Martin, J. H. (2009). Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, Prentice Hall, 2 nd Edition.

Kwak, H., Lee, C., Park, H., and Moon, S. (2010). “What is Twitter, a social network or a news media?”, Proceedings of the 19th International Conference on World Wide Web, (New York, NY, USA: ACM), pp. 591–600.

Li, Y.-M., and Li, T.-Y. (2011). “Deriving Marketing Intelligence over Microblogs.”, Proceedings of 44th Hawaii International Conference On System Sciences (HICSS), pp. 1 –10.

Naaman, C.-H. L. Mor., and Boase, J. (2010). “Is it all About Me? User Content in Social Awareness Streams”, Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, 2010.

Pak, A., and Paroubek, P. (2010). “Twitter as a corpus for sentiment analysis and opinion mining.”, Proceedings of the 7th Conference on International Language Resources and Evaluation (LREC’10).

Pang, B., Lee, L., and Vaithyanathan, S. (2002). “Thumbs up?: sentiment classification using machine learning techniques.”, Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing Volume 10, (Stroudsburg, PA, USA: Association for Computational Linguistics), pp. 79–86.

Pang, B., and Lee, L. (2008). “Opinion Mining and Sentiment Analysis”, Foundation and Trends in Information Retrieval, Vol. 2 (1-2), pp. 1-135.

Russell, M. A. (2011). Mining the Social Web, O’Reilly Media, Inc, 1 st Edition.

Sakaki, T., Okazaki, M., and Matsuo, Y. (2010). “Earthquake shakes Twitter users: real-time event detection by social sensors.”, Proceedings of the 19th International Conference on World Wide Web, (New York, NY, USA: ACM), pp. 851–860.

Sloman, A., Chrisley, R., Scheutz, M. (2005). “The architectural basis of affective states and processes.”, Who Needs Emotions?: The Brain Meets the Machine, v. 3, pp. 203–244.

Waltinger, U. (2009). “Polarity reinforcement: Sentiment polarity identification by means of social semantics.”, AFRICON, 2009, pp. 1 – 6.

Wiebe, J.M. (1990). “Identifying subjective characters in narrative.”, Proceedings of the 13th Conference on Computational Linguistics Volume 2, (Stroudsburg, PA, USA: Association for Computational Linguistics), pp. 401–406.

Wiebe, J., Wilson, T., Cardie, C. (2006). “Annotating Expressions of Opinions and Emotions in Language”, Language Resources and Evaluation, v. 39, n. 2-3, pp. 165 – 210.

Zhang, K., Cheng, Y., Xie, Y., Honbo, D., Agrawal, A., Palsetia, D., Lee, K., Liao, W., Choudhary, A. (2011). “SES: Sentiment Elicitation System for Social Media Data.”, Proceedings of 11th International Conference on Data Mining Workhops (ICDMW), pp. 129 – 136.
Publicado
17/07/2012
NASCIMENTO, Paula; AGUAS, Rodrigo; LIMA, Débora de; KONG, Xiao; OSIEK, Bruno; XEXÉO, Geraldo; SOUZA, Jano de. Análise de sentimento de tweets com foco em notícias. In: BRAZILIAN WORKSHOP ON SOCIAL NETWORK ANALYSIS AND MINING (BRASNAM), 1. , 2012, Curitiba. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2012 . p. 25-36. ISSN 2595-6094.

Artigos mais lidos do(s) mesmo(s) autor(es)