ErrorSim: a deep learning error simulator in left ventricle segmentations

  • Bruno F. Raquel USP
  • Matheus A. O. Ribeiro USP
  • Fátima L. S. Nunes USP

Abstract


Left ventricle segmentation in Cardiac Magnetic Resonance exams is important for medical diagnosis. Deep learning methods have excelled in obtaining segmentations similar to those of experts. However, one of the current limitations is the arbitrary production of anatomical errors that can compromise the diagnosis. Given this problem, this work proposes a framework for categorization and controlled automatic simulation of different anatomical errors. The framework favors the development of methods aimed at detecting and correcting these errors. Results indicate that the proposed framework is capable of generating errors of several categories and replicating the same errors produced by networks (Dice > 0.8).

References

Bernard, O. et al. (2018). Deep learning techniques for automatic MRI cardiac multistructures segmentation and diagnosis: Is the problem solved? IEEE Transactions on Medical Imaging, 37(11):2514–2525.

Cong, C. and Zhang, H. (2018). Invert-u-net dnn segmentation model for MRI cardiac left ventricle segmentation. The Journal of Engineering, 2018(16):1463–1467.

Graves, C. V., Moreno, R. A., Rebelo, M. S., Nomura, C. H., and Gutierrez, M. A. (2020). Improving the generalization of deep learning methods to segment the left ventricle in short axis MR images. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine &; Biology Society (EMBC), page 1203–1206. IEEE.

Guan, S., Samala, R. K., Arab, A., and Chen, W. (2023). Miss-tool: medical image segmentation synthesis tool to emulate segmentation errors. In Iftekharuddin, K. M. and Chen, W., editors, Medical Imaging 2023: Computer-Aided Diagnosis, page 41. SPIE.

Guo, F., Ng, M., Goubran, M., Petersen, S. E., Piechnik, S. K., Neubauer, S., and Wright, G. (2020). Improving cardiac mri convolutional neural network segmentation on small training datasets and dataset shift: A continuous kernel cut approach. Medical Image Analysis, 61:101636.

Khened, M., Kollerathu, V. A., and Krishnamurthi, G. (2019). Fully convolutional multi-scale residual densenets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers. Medical Image Analysis, 51:21–45.

Landman, B. and Warfield, S. (2013). 2013 cardiac atlas project standard challenge - participant project.

Lohr, D. et al. (2024). Precision imaging of cardiac function and scar size in acute and chronic porcine myocardial infarction using ultrahigh-field mri. Communications Medicine, 4(1).

Painchaud, N., Skandarani, Y., Judge, T., Bernard, O., Lalande, A., and Jodoin, P.-M. (2020). Cardiac segmentation with strong anatomical guarantees. IEEE Transactions on Medical Imaging, 39(11):3703–3713.

Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A. J., and Wright, G. A. (2009). Evaluation framework for algorithms segmenting short axis cardiac MRI. The MIDAS Journal.

Ribeiro, M. A. O. and Nunes, F. L. S. (2021). Evaluating the pre-processing impact on the generalization of deep learning networks for left ventricle segmentation. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), page 3505–3512. IEEE.

Ribeiro, M. A. O. and Nunes, F. L. S. (2022). Left ventricle segmentation in cardiac MR: A systematic mapping of the past decade. ACM Comput. Surv., 54(11s).

Sayin, B. Y. and Oto, A. (2022). Left ventricular hypertrophy: Etiology-based therapeutic options. Cardiology and Therapy, 11(2):203–230.

Suzuki, S. and Abe, K. (1985). Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing, 30(1):32–46.

Tajbakhsh, N., Lai, B., Ananth, S. P., and Ding, X. (2020). Errornet: Learning error representations from limited data to improve vascular segmentation. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), page 1364–1368. IEEE.

Waite, S., Kolla, S., Jeudy, J., Legasto, A., Macknik, S. L., Martinez-Conde, S., Krupinski, E. A., and Reede, D. L. (2017). Tired in the reading room: The influence of fatigue in radiology. Journal of the American College of Radiology, 14(2):191–197.

Wang, Y. et al. (2021). Deep learning based fully automatic segmentation of the left ventricular endocardium and epicardium from cardiac cine mri. Quantitative Imaging in Medicine and Surgery, 11(4):1600–1612.
Published
2025-09-29
RAQUEL, Bruno F.; RIBEIRO, Matheus A. O.; NUNES, Fátima L. S.. ErrorSim: a deep learning error simulator in left ventricle segmentations. In: NATIONAL MEETING ON ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE (ENIAC), 22. , 2025, Fortaleza/CE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 1761-1772. ISSN 2763-9061. DOI: https://doi.org/10.5753/eniac.2025.13909.

Most read articles by the same author(s)

1 2 3 > >>