A comparative study of optic disc detection methods on five public available database
Resumo
Fundus images are valuable resources in eye diagnosis. Thus, processing and analysis of these images constitute a relevant task to aid eye specialists. Particularly, finding the Optic Disk (OD) in a retinal fundus image improves significantly the chances to detect eye diseases. In fact, the OD location can be input for algorithms that detect other retinal anatomical structures such as macula, blood vessels and some anomalies, such as exudates, hemorrhages and drusen. And these anomalies indicate the presence of retinal diseases. This paper compares and evaluate the performance of seven different automatic OD detection algorithms using five public benchmark image database.
Referências
Aquino, A., GegÃondez-Arias, M. E., and MarÃn, D. (2010). Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Transactions on Medical Imaging, 29(11):1860 – 1869.
Bernardes, R., Serranho, P., and Lobo, C. (2011). Digital ocular fundus imaging: A review. Ophthalmologica, 4(226):161–181.
Carmona, E., Rincon, M., Garcia-Feijoo, J., and de-la Casa, J. M. M. (2008). Identification of the optic nerve head with genetic algorithms. Artificial Intelligence in Medicine, 43(3):243–259.
Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., and Goldbaum, M. (1989). Automatic detection of the optic nerve in retinal images. In Proceedings of the IEEE International Conference on Image Processing, volume 1, pages 1–5, Warwick. IEEE.
Damian, F. (2006). Aria online, retinal image archive. [link].
Dehghani, A., Moghaddam, H. A., and Moin, M.-S. (2012). Optic disc localization in retinal images using histogram matching. EURASIP Journal on Image and Video Processing, (19):1–10.
Faust, O., Acharya, R., Ng, E. Y. K., Ng, K. H., and Suri, J. (2012). Algorithms for the automated detection of diabetic retinopathy using digital fundus images: A review. J Med Syst, 36:145–157.
Gagnon, L., Lalonde, M., Beaulieu, M., and Boucher, M. C. (2001). Procedure to detect anatomical structures in optical fundus images. In Proceedings of Conference Medical Imaging, volume 4322, pages 1218–1225, San Diego.
Giancardo, L., Meriaudeau, F., Karnowski, T. P., Li, Y., Garg, S., Tobin, K. W., and Chaum, E. (2012). Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Medical Image Analysis, 16(1):216–226.
Ho, C.-Y., Pai, T.-W., Chang, H.-T., and Chen, H.-Y. (2011). An atomatic fundus image analysis system for clinical diagnosis of glaucoma. In International Conference on Complex, Intelligent, and Software Intensive Systems, pages 559–564.
Hoover, A., Kouznetsova, V., and Goldbaum, M. (2000). Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging, 19(3):203–210.
Krishnan, M. M. R., Acharya, U., Chua, C. K., Min, L. C., Ng, E., Mushrif, M., and Laude, A. (2012). Application of intuitionistic fuzzy histon segmentation for the automated detection of optic disc in digital fundus images. In IEEE Conference on Biomedical and Health Informatics, pages 444–447.
Liu, Z., Opas, C., and Krishnan, S. (1997). Automatic image analysis of fundus photograph. In Proceedings 19th IEEE Engineering in Medicine and Biology Society Annual Conference, volume 2, pages 524–525, Chicago, IL, EUA.
Messidor (2008). Methods to evaluate segmentation and indexing techniques in the field of retinal ophthalmology. [link].
Punnolil, A. (2013). A novel approach for diagnosis and severity grading of diabetic maculopathy. Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on, pages 1230–1235.
Rajaput, G. G., Reshmi, B. M., and Sidramappa, C. (2011). Automatic localization of fovea center using mathematical morpology in fundus images. International Journal of Machine Intelligence, 3(4):172–179.
Sekar, G. B. and Nagarajan, M. P. (2012). Localisation of optic disc in fundus images by using clustering and histogram techniques. In International Conference on Computing, Electronics and Electrical Technologies ICCEET, pages 584 – 589.
Sekhar, S., Al-Nuaimy, W., and Nandi, A. K. (2008). Automated localisation or retinal optic disk using hough transform. In 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, pages 1577–1580, Paris.
Sinthanayothin, C., Boyce, J., Cook, H., and Williamson, T. (1999). Automated localisation of the optic disk, fovea, and retinal blood vessels from digital colour fundus images. British Journal of Ophthalmology, 83(8):902–910.
Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., and Ginneken, B. V. (2004). Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging, 23(4):501–509.
Tobin, K. W., Chaum, E., Govindasamy, V. P., and Karnowski, T. P. (2007). Detection of anatomic structures in human retinal imagery. IEEE Transactions on Medical Imaging, 26(12):1729–1739.
Trevisan, D. G., Nicolas, V., Macq, B., and Nedel, L. P. (2007). A medical componentbased framework for image guided surgery. In Workshop de Informática Médica, pages 86 – 95.
Veras, R., Medeiros, F., Silva, R., and Ushizima, D. (2013). Assessing the accuracy of macula detection methods in retinal images. In nternational Conference on Digital Signal Processing, Santorini, Greece.
Vimala, G. A. G. and Mohideen, S. K. (2013). Automatic detection of optic disc and exudate from retinal linages using clustering algorithm. In Intelligent Systems and Control.
Zhu, X., Rangayyan, R. M., and Ells, A. L. (2010). Detection of the optic nerve head in fundus images of the retina using the hough transform for circles. Journal of Digital Imaging, 23(3):332–341.
Zubair, M., Yamin, A., and Khan, S. (2013). Automated detection of optic disc for the analysis of retina using color fundus image. In IEEE International Conference on Imaging Systems and Techniques, pages 239 – 242, Beijing.