The use of CRISP-DM methodology to support data analysis in the mHealth IUProst application
Abstract
The use of mobile devices in healthcare aims to assist in the control and monitoring of diseases and clinical conditions. Mobile health applications (mHealth) contribute to individuals’ self-care. IUProst is a mHealth application that aids patients during the treatment of urinary incontinence and comorbidity resulting from prostate removal surgery in cancer patients. Despite the potential of mHealth applications like IUProst to assist in the treatment of urinary incontinence, the low adherence of users underscores the urgency of implementing effective engagement mechanisms. The objective of this article is to report on a study that employs the CRISP-DM methodology to identify patterns, trends, and insights in IUProst data, aiming to uncover demands to support the application’s future development cycles. Analyses of the results obtained in the business understanding and data understanding phases reveal a significant number of users and exercises performed but with low participation in the proposed cognitive behavioral treatment.
References
dos Anjos, F. M., Oliveira, L. W., Souza, C. H. R., and Carvalho, S. T. (2022). Aplicaçoes de técnicas de machine learning e gamificaçao no autocuidado em saude: Uma revisao sistemática. Anais Estendidos do XXI Simpósio Brasileiro de Jogos e Entretenimento Digital, pages 1376–1380.
Fan, S., Jain, R. C., and Kankanhalli, M. S. (2024). A comprehensive picture of factors affecting user willingness to use mobile health applications. ACM Transactions on Computing for Healthcare, 5(1):1–31.
Gupta, M. K. and Chandra, P. (2020). A comprehensive survey of data mining. International Journal of Information Technology, 12(4):1243–1257.
Izidoro, L. C. d. R., Mata, L. R. F. d., Azevedo, C., Paula, A. A. P. d., Pereira, M. G., Santos, J. E. M. d., Brasil, V. V., and Oliveira, L. M. d. A. C. (2022). Programa cognitivo-comportamental para controle de sintomas do trato urinário inferior pós-prostatectomia radical: ensaio clínico randomizado. Revista Brasileira de Enfermagem, 75.
Kim, G., Hwang, D., Park, J., Kim, H. K., and Hwang, E.-S. (2024). How to design and evaluate mhealth apps? a case study of a mobile personal health record app. Electronics, 13(1).
Maataoui, S., Bencheikh, G., and Bencheikh, G. (2023). predictive maintenance in the industrial sector: a crisp-dm approach for developing accurate machine failure prediction models. In 2023 Fifth International Conference on Advances in Computational Tools for Engineering Applications (ACTEA), pages 223–227. IEEE.
Machado, A. F., Estevam, F. E. B., Izidoro, L. C. d. R., Oliveira, H. M. d., Anjos, F. M. d. S. d., Carvalho, S. T. d., and Mata, L. R. F. d. (2022). Male urinary incontinence and the digital technology: Evaluation of mobile applications available for download. Cogitare Enfermagem, 27.
Martins, B., Ferreira, D., Neto, C., Abelha, A., and Machado, J. (2021). Data mining for cardiovascular disease prediction. Journal of Medical Systems, 45:1–8.
Oliveira, D., Ferreira, D., Abreu, N., Leuschner, P., Abelha, A., and Machado, J. (2022). Prediction of covid-19 diagnosis based on openehr artefacts. Scientific Reports, 12(1):12549.
Organization, W. H. et al. (2015). A practical guide for engaging with mobile operators in mhealth.
Peixoto, H., Ramos, V., Marques, C., and Machado, J. (2022). Predicting diabetes disease for healthy smart cities. EAI Endorsed Transactions on Smart Cities, 6(18):e1–e1.
Plotnikova, V., Dumas, M., and Milani, F. P. (2022). Applying the crisp-dm data mining process in the financial services industry: Elicitation of adaptation requirements. Data & knowledge engineering, 139:102013.
Ramos, J. L. C., Rodrigues, R. L., Silva, J. C. S., and de Oliveira, P. L. S. (2020). Crispedm: uma proposta de adaptação do modelo crisp-dm para mineração de dados educacionais. In Anais do XXXI Simpósio Brasileiro de Informática na Educação, pages 1092–1101. SBC.
Riegel, B., Dunbar, S. B., Fitzsimons, D., Freedland, K. E., Lee, C. S., Middleton, S., Stromberg, A., Vellone, E., Webber, D. E., and Jaarsma, T. (2021). Self-care research: where are we now? where are we going? International journal of nursing studies, 116:103402.
Schröer, C., Kruse, F., and Gómez, J. M. (2021). A systematic literature review on applying crisp-dm process model. Procedia Computer Science, 181:526–534.
Wirth, R. and Hipp, J. (2000). Crisp-dm: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining, volume 1, pages 29–39. Manchester.
Woldaregay, A. Z., Issom, D.-Z., Henriksen, A., Marttila, H., Mikalsen, M., Pfuhl, G., Sato, K., Lovis, C., and Hartvigsen, G. (2018). Motivational factors for user engagement with mhealth apps. pHealth, 249:151–157.
