Method for Manual Segmentation of Thermal Images for Ground Truth Generation

  • Rafael S. Marques UFF
  • Roger Resmini UFF
  • Aura Conci UFF
  • Cristina A. P. Fontes UFF
  • Rita C. F. Lima UFPE

Abstract


Breast cancer is the malignant tumor that most afflicts women in the world. Early detection and treatment is the best way to improve the survival rate. In this context, thermography is a very important screening tool because it can show breast thermal asymmetry and neovascularization much before usual exams such as mammography and ultrasonography. To use decision-making methods, it is necessary that Region of Interest (ROI) have been segmented. The automatic segmentation of ROI is the first step for the use of a Computer Aided Diagnosis System (CADx). Moreover, it reduces error possibilities; allows repeatability and makes possible more efficient storage with the use of Content Based Images Retrieval (CBIR) techniques. The latter, i.e. CBIR, is essential for speeding up the time of database management by the specialist responsible for the clinical work. This paper presents a new idea: The tablet use to assist the physician in the manual segmentation process. Such segmentation is a fundamental step in the process of construction of a standardized base to assist in the evaluation, validation and comparison of different techniques for automatic segmentation.

References

Falcão, A.X.; Udupa, J.K.; Miyazawa, F.K. (2000) "An ultra-fast user-steered image segmentation paradigm: Live-wire-on-the-fly", IEEE Transactions on Medical Imaging, Vol. 19, No. 1, pp. 55-62.

GTMAKER (2012). Ground Truth Maker. Disponível em: [link]. Acessado em: 02 de junho de 2012.

INCA. (2012) Instituto Nacional do Câncer. Disponível em: [link]. Acessado em 02 de junho de 2012.

Kang, H.W.; Shin, S.Y. (2002) “Enhanced lane: interactive image segmentation by incremental path map construction”, Graphical Models, Vol. 64, No. 5, pp. 282-303.

Kapoor, P.; Prasad, S.V.A.V. (2010) "Image processing for early diagnosis of breast cancer using infrared images", 2nd International Conference on Computer and Automation Engineering, Vol. 3, No. 1, pp. 564-566.

Moghbel, M.; Mashohor, S. (2011) “A review of computer assisted detection/diagnosis (CAD) in breast thermography for breast cancer detection”, Artificial Intelligence Review, pp. 1-9.

Motta, L.S.; Conci, A.; Lima, R.C.F.; Diniz, E.M. (2010) “Automatic segmentation on thermograms in order to aid diagnosis and 2D modeling”, Proceedings of 10th Workshop em Informática Médica, Belo Horizonte, MG, Brazil, Vol. 1, pp. 1610-1619.

Motta, L.S.; (2010) “Obtenção automática da região de interesse em termogramas frontais da mama para o auxílio à detecção precoce de doenças”, Dissertação de Mestrado Instituto de Computação, Universidade Federal Fluminense - Niterói, Brazil.

Ng, EY-K. (2009) “A review of thermography as promising non-invasive detection modality for breast tumor”. International Journal of Thermal Sciences, Vol. 48, No. 5, pp. 849-859.

PROENG. (2012) "Image processing and image analyses applied to mastology", Disponível em: [link], Acessado em: 02 de junho de 2012.

Qi, H.; Kuruganti, P. T.; Snyder, W. E. (2006) “Detecting Breast Cancer from Thermal Infrared Images by Asymmetry Analysis". Biomedical Engineering Handbook, CRC Press. Capítulos 27.1 - 27.14.

Scales, N.; Herry, C.; Frize, M. (2004) “Automated Image Segmentation for Breast Analysis Using Infrared Images”. Proceedings of the 26th Annual International Conference of the IEEE EMBS, pp. 1737 – 1740.

Umadevi, V., Raghavan, S. V.; Jaipurka, S. (2010) “Interpreter for Breast Thermogram Characterization”, IEEE EMBS Conference on Biomedical Engineering & Sciences (IECBES), Kuala Lumpur, Malaysia, pp. 150-154.

Wishart, G. C., Campisid, M., Boswella, M., Chapmana, D., Shackletona, V., Iddlesa, S., Halletta, A.; Britton, P. D. (2010) “The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy”, European Journal of Surgical Oncology, Vol. 36, No. 6, pp. 535-540.

Xu, R. X.; Young, D. C.; Mao, J. J.; Povoski, S. P. (2007). “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions”. Breast Cancer Res. Treat. Vol. 9, No. 6, R88.

Zadeh, H.G.; Kazerouni, I.A.; Haddadnia, J. (2011) "Distinguish breast cancer based on thermal features in infrared images", Canadian Journal on Image Processing and Computer Vision, Vol. 2, No. 6, pp. 54-58.

Zhou, Q.; Li, Z.; Aggarwal, J.K. (2004) “Boundary extraction in thermal images by edge map”, Proceedings of the ACM Symposium on Applied Computing, pp. 254-258.
Published
2012-07-16
MARQUES, Rafael S.; RESMINI, Roger; CONCI, Aura; FONTES, Cristina A. P.; LIMA, Rita C. F.. Method for Manual Segmentation of Thermal Images for Ground Truth Generation. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 12. , 2012, Curitiba/PR. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2012 . p. 102-110. ISSN 2763-8952.

Most read articles by the same author(s)

1 2 3 > >>