Reducing Intra-Subject Bias in Parkinson’s Disease Voice Classification with Ant Colony Optimization
Abstract
Parkinson’s Disease (PD) is a neurodegenerative condition that affects voice production. Previous studies have employed machine learning techniques for PD diagnosis based on voice data. However, the vast majority of existing approaches overlook intra-subject variation in their methodologies. This study proposes a methodology that accounts for such variation while also employing the bio-inspired Ant Colony Optimization algorithm for feature selection, thereby reducing overfitting. An accuracy of 84.80% was achieved in distinguishing individuals with PD from healthy controls, providing a fairer and reliable approach and highlighting the potential of bio-inspired algorithms in PD diagnosis.References
Braak, H. and Braak, E. (2000). Pathoanatomy of parkinson’s disease. J Neurol, 247 Suppl 2:II3–10.
da Silva, M. I., Felix, J. P., Prado, T. d. S., Chagas, A. L. d. B., Bucci, G. d. F. F. B., da Fonseca, A. U., and Soares, F. (2024). Sobre a análise de sinais de voz para o diagnóstico da doença de parkinson. Journal of Health Informatics, 16(Especial).
Daliri, M. R. (2012). Automatic diagnosis of neuro-degenerative diseases using gait dynamics. Measurement, 45(7):1729–1734.
Darwish, A. (2018). Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications. Future Computing and Informatics Journal, 3(2):231–246.
Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4):28–39.
Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1):29–41.
Felix, J., da Silva, M. I., Chagas, A. L., Salvini, R., Nascimento, H., and Soares, F. (2025). Analyzing the effect of replicated voice samples in Parkinson’s disease classification. In 2025 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pages 1–5, Vancouver, Canada. IEEE. To appear.
Govindu, A. and Palwe, S. (2023). Early detection of parkinson’s disease using machine learning. Procedia Computer Science, 218:249–261. International Conference on Machine Learning and Data Engineering.
Hayes, M. T. (2019). Parkinson’s disease and parkinsonism. The American Journal of Medicine, 132(7):802–807.
Ho, A., Iansek, R., Marigliani, C., Bradshaw, J., and Gates, S. (1998). Speech impairment in a large sample of patients with parkinson’s disease. Behavioural neurology, 11:131–137.
Little, M., Mcsharry, P., Hunter, E., Spielman, J., and Ramig, L. (2009). Suitability of dysphonia measurements for telemonitoring of parkinson’s disease. IEEE transactions on bio-medical engineering, 56:1015.
Naranjo, L., Pérez, C. J., Campos-Roca, Y., and Martín, J. (2016). Addressing voice recording replications for parkinson’s disease detection. Expert Systems with Applications, 46:286–292.
Ouhmida, A., Terrada, O., Raihani, A., Cherradi, B., and Hamida, S. (2021). Voice-based deep learning medical diagnosis system for parkinson’s disease prediction. In 2021 International Congress of Advanced Technology and Engineering (ICOTEN), pages 1–5.
Parlar, T. (2021). A heuristic approach with artificial neural network for parkinson’s disease. International Journal of Applied Mathematics Electronics and Computers, 9:1–6.
Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A.-E., and Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3(1):1–21.
Prusty, S., Patnaik, S., and Dash, S. K. (2022). Skcv: Stratified k-fold cross-validation on ml classifiers for predicting cervical cancer. Frontiers in Nanotechnology, 4.
Rana, A., Dumka, A., Singh, R., Rashid, M., Ahmad, N., and Panda, M. (2022). An efficient machine learning approach for diagnosing parkinson’s disease by utilizing voice features. Electronics, 11:3782.
Sakar, C. O., Serbes, G., Gunduz, A., Tunc, H. C., Nizam, H., Sakar, B. E., Tutuncu, M., Aydin, T., Isenkul, M. E., and Apaydin, H. (2019). A comparative analysis of speech signal processing algorithms for parkinson’s disease classification and the use of the tunable q-factor wavelet transform. Applied Soft Computing, 74:255–263.
Solana-Lavalle, G., Galan-Hernandez, J., and Rosas-Romero, R. (2020). Automatic parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features. Biocybernetics and Biomedical Engineering, 40.
Tsanas, A., Little, M. A., McSharry, P. E., Spielman, J., and Ramig, L. O. (2012). Novel speech signal processing algorithms for high-accuracy classification of parkinson’s disease. IEEE Trans Biomed Eng, 59(5):1264–1271.
Varghese, J., Brenner, A., Fujarski, M., van Alen, C. M., Plagwitz, L., and Warnecke, T. (2024). Machine learning in the parkinson’s disease smartwatch (pads) dataset. npj Parkinson’s Disease, 10(1):9.
da Silva, M. I., Felix, J. P., Prado, T. d. S., Chagas, A. L. d. B., Bucci, G. d. F. F. B., da Fonseca, A. U., and Soares, F. (2024). Sobre a análise de sinais de voz para o diagnóstico da doença de parkinson. Journal of Health Informatics, 16(Especial).
Daliri, M. R. (2012). Automatic diagnosis of neuro-degenerative diseases using gait dynamics. Measurement, 45(7):1729–1734.
Darwish, A. (2018). Bio-inspired computing: Algorithms review, deep analysis, and the scope of applications. Future Computing and Informatics Journal, 3(2):231–246.
Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4):28–39.
Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1):29–41.
Felix, J., da Silva, M. I., Chagas, A. L., Salvini, R., Nascimento, H., and Soares, F. (2025). Analyzing the effect of replicated voice samples in Parkinson’s disease classification. In 2025 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pages 1–5, Vancouver, Canada. IEEE. To appear.
Govindu, A. and Palwe, S. (2023). Early detection of parkinson’s disease using machine learning. Procedia Computer Science, 218:249–261. International Conference on Machine Learning and Data Engineering.
Hayes, M. T. (2019). Parkinson’s disease and parkinsonism. The American Journal of Medicine, 132(7):802–807.
Ho, A., Iansek, R., Marigliani, C., Bradshaw, J., and Gates, S. (1998). Speech impairment in a large sample of patients with parkinson’s disease. Behavioural neurology, 11:131–137.
Little, M., Mcsharry, P., Hunter, E., Spielman, J., and Ramig, L. (2009). Suitability of dysphonia measurements for telemonitoring of parkinson’s disease. IEEE transactions on bio-medical engineering, 56:1015.
Naranjo, L., Pérez, C. J., Campos-Roca, Y., and Martín, J. (2016). Addressing voice recording replications for parkinson’s disease detection. Expert Systems with Applications, 46:286–292.
Ouhmida, A., Terrada, O., Raihani, A., Cherradi, B., and Hamida, S. (2021). Voice-based deep learning medical diagnosis system for parkinson’s disease prediction. In 2021 International Congress of Advanced Technology and Engineering (ICOTEN), pages 1–5.
Parlar, T. (2021). A heuristic approach with artificial neural network for parkinson’s disease. International Journal of Applied Mathematics Electronics and Computers, 9:1–6.
Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A.-E., and Lang, A. E. (2017). Parkinson disease. Nature Reviews Disease Primers, 3(1):1–21.
Prusty, S., Patnaik, S., and Dash, S. K. (2022). Skcv: Stratified k-fold cross-validation on ml classifiers for predicting cervical cancer. Frontiers in Nanotechnology, 4.
Rana, A., Dumka, A., Singh, R., Rashid, M., Ahmad, N., and Panda, M. (2022). An efficient machine learning approach for diagnosing parkinson’s disease by utilizing voice features. Electronics, 11:3782.
Sakar, C. O., Serbes, G., Gunduz, A., Tunc, H. C., Nizam, H., Sakar, B. E., Tutuncu, M., Aydin, T., Isenkul, M. E., and Apaydin, H. (2019). A comparative analysis of speech signal processing algorithms for parkinson’s disease classification and the use of the tunable q-factor wavelet transform. Applied Soft Computing, 74:255–263.
Solana-Lavalle, G., Galan-Hernandez, J., and Rosas-Romero, R. (2020). Automatic parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features. Biocybernetics and Biomedical Engineering, 40.
Tsanas, A., Little, M. A., McSharry, P. E., Spielman, J., and Ramig, L. O. (2012). Novel speech signal processing algorithms for high-accuracy classification of parkinson’s disease. IEEE Trans Biomed Eng, 59(5):1264–1271.
Varghese, J., Brenner, A., Fujarski, M., van Alen, C. M., Plagwitz, L., and Warnecke, T. (2024). Machine learning in the parkinson’s disease smartwatch (pads) dataset. npj Parkinson’s Disease, 10(1):9.
Published
2025-06-09
How to Cite
LOBO, Pedro Lemes Sixel; FELIX, Juliana Paula; SALVINI, Rogerio; COELHO, Clarimar; SOARES, Fabrizzio.
Reducing Intra-Subject Bias in Parkinson’s Disease Voice Classification with Ant Colony Optimization. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 25. , 2025, Porto Alegre/RS.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2025
.
p. 521-532.
ISSN 2763-8952.
DOI: https://doi.org/10.5753/sbcas.2025.7506.
