Evaluating Self-Efficacy and Acceptance of CoderBot in Introductory Programming Courses: an exploratory study
Abstract
Programming contents are considered complex from the student’s perspective. Chatbots are an emerging technology that has stood out as a pedagogical agent in teaching programming. In this context, we propose the CoderBot as an educational pedagogical agent based on Example-Based Learning. We designed CoderBot to help students understand programming content. We conducted an exploratory study with 103 undergraduate students in introductory programming courses to assess their self-efficacy and acceptance of CoderBot.We highlight the ease of use of CoderBot, improvements in understanding concepts, and the positive impact on students’ motivation and self-confidence.
Keywords:
chatbot, programming learning, coderbot, self-efficacy, acceptance
References
Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S., e Van Velsen, M. (2014). Using erroneous examples to improve mathematics learning with a web-based tutoring system. Computers in Human Behavior, 36:401–411.
Alves, G., Rebouças, A., e Scaico, P. (2019). Coding dojo como prática de aprendizagem colaborativa para apoiar o ensino introdutório de programação: Um estudo de caso. Em Anais do XXVII Workshop sobre Educação em Computação, páginas 276–290. SBC.
Atkinson, R. K., Derry, S. J., Renkl, A., e Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70(2):181–214.
Carreira, G., Silva, L., Mendes, A. J., e Oliveira, H. G. (2022). Pyo, a chatbot assistant for introductory programming students. Em 2022 International Symposium on Computers in Education (SIIE), páginas 1–6.
Clarizia, F., Colace, F., Lombardi, M., Pascale, F., e Santaniello, D. (2018). Chatbot: An education support system for student. Em International Symposium on Cyberspace Safety and Security, páginas 291–302. Springer.
Garces, S., Vieira, C., Ravai, G., e Magana, A. J. (2023). Engaging students in active exploration of programming worked examples. Education and Information Technologies, 28(3):2869–2886.
Große, C. S. e Renkl, A. (2007). Finding and fixing errors in worked examples: Can this foster learning outcomes? Learning and instruction, 17(6):612–634.
Hobert, S. (2019). Say hello to ‘coding tutor’! design and evaluation of a chatbot-based learning system supporting students to learn to program.
McLaren, B. M., van Gog, T., Ganoe, C., Karabinos, M., e Yaron, D. (2016). The efficiency of worked examples compared to erroneous examples, tutored problem solving, and problem solving in computer-based learning environments. Computers in Human Behavior, 55:87–99.
Penney, J., Pimentel, J. F., Steinmacher, I., e Gerosa, M. A. (2023). Anticipating user needs: Insights from design fiction on conversational agents for computational thinking. Em International Workshop on Chatbot Research and Design, páginas 204–219. Springer.
Raiche, A.-P., Dauphinais, L., Duval, M., De Luca, G., Rivest-Hénault, D., Vaughan, T., Proulx, C., e Guay, J.-P. (2023). Factors influencing acceptance and trust of chatbots in juvenile offenders’ risk assessment training. Frontiers in Psychology, 14:1184016.
Robins, A. V. (2019). 12 novice programmers and introductory programming. The Cambridge handbook of computing education research, página 327.
Ruan, S., Jiang, L., Xu, J., Tham, B. J.-K., Qiu, Z., Zhu, Y., Murnane, E. L., Brunskill, E., e Landay, J. A. (2019). Quizbot: A dialogue-based adaptive learning system for factual knowledge. Em Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, páginas 1–13.
Smutny, P. e Schreiberova, P. (2020). Chatbots for learning: A review of educational chatbots for the facebook messenger. Computers Education, 151:103862.
Sweller, J., Van Merrienboer, J. J., e Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, páginas 251–296.
Venkatesh, V. e Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2):186–204.
Winkler, R., Hobert, S., Salovaara, A., Söllner, M., e Leimeister, J. M. (2020). Sara, the lecturer: Improving learning in online education with a scaffolding-based conversational agent. Em Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, página 1–14, New York, NY, USA. Association for Computing Machinery.
Alves, G., Rebouças, A., e Scaico, P. (2019). Coding dojo como prática de aprendizagem colaborativa para apoiar o ensino introdutório de programação: Um estudo de caso. Em Anais do XXVII Workshop sobre Educação em Computação, páginas 276–290. SBC.
Atkinson, R. K., Derry, S. J., Renkl, A., e Wortham, D. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70(2):181–214.
Carreira, G., Silva, L., Mendes, A. J., e Oliveira, H. G. (2022). Pyo, a chatbot assistant for introductory programming students. Em 2022 International Symposium on Computers in Education (SIIE), páginas 1–6.
Clarizia, F., Colace, F., Lombardi, M., Pascale, F., e Santaniello, D. (2018). Chatbot: An education support system for student. Em International Symposium on Cyberspace Safety and Security, páginas 291–302. Springer.
Garces, S., Vieira, C., Ravai, G., e Magana, A. J. (2023). Engaging students in active exploration of programming worked examples. Education and Information Technologies, 28(3):2869–2886.
Große, C. S. e Renkl, A. (2007). Finding and fixing errors in worked examples: Can this foster learning outcomes? Learning and instruction, 17(6):612–634.
Hobert, S. (2019). Say hello to ‘coding tutor’! design and evaluation of a chatbot-based learning system supporting students to learn to program.
McLaren, B. M., van Gog, T., Ganoe, C., Karabinos, M., e Yaron, D. (2016). The efficiency of worked examples compared to erroneous examples, tutored problem solving, and problem solving in computer-based learning environments. Computers in Human Behavior, 55:87–99.
Penney, J., Pimentel, J. F., Steinmacher, I., e Gerosa, M. A. (2023). Anticipating user needs: Insights from design fiction on conversational agents for computational thinking. Em International Workshop on Chatbot Research and Design, páginas 204–219. Springer.
Raiche, A.-P., Dauphinais, L., Duval, M., De Luca, G., Rivest-Hénault, D., Vaughan, T., Proulx, C., e Guay, J.-P. (2023). Factors influencing acceptance and trust of chatbots in juvenile offenders’ risk assessment training. Frontiers in Psychology, 14:1184016.
Robins, A. V. (2019). 12 novice programmers and introductory programming. The Cambridge handbook of computing education research, página 327.
Ruan, S., Jiang, L., Xu, J., Tham, B. J.-K., Qiu, Z., Zhu, Y., Murnane, E. L., Brunskill, E., e Landay, J. A. (2019). Quizbot: A dialogue-based adaptive learning system for factual knowledge. Em Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, páginas 1–13.
Smutny, P. e Schreiberova, P. (2020). Chatbots for learning: A review of educational chatbots for the facebook messenger. Computers Education, 151:103862.
Sweller, J., Van Merrienboer, J. J., e Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, páginas 251–296.
Venkatesh, V. e Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2):186–204.
Winkler, R., Hobert, S., Salovaara, A., Söllner, M., e Leimeister, J. M. (2020). Sara, the lecturer: Improving learning in online education with a scaffolding-based conversational agent. Em Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, página 1–14, New York, NY, USA. Association for Computing Machinery.
Published
2024-11-04
How to Cite
MENDES, André et al.
Evaluating Self-Efficacy and Acceptance of CoderBot in Introductory Programming Courses: an exploratory study. In: BRAZILIAN SYMPOSIUM ON COMPUTERS IN EDUCATION (SBIE), 35. , 2024, Rio de Janeiro/RJ.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2024
.
p. 3264-3273.
DOI: https://doi.org/10.5753/sbie.2024.244885.
