Physical Layer-Aware Circuit Reallocation to Prevent Request Blocking in Elastic Optical Networks

  • Selles Araújo UFPI
  • Jurandir Lacerda UFPI
  • Alexandre Fontinele UFPI
  • Érico Leão UFPI
  • José V. dos Reis Júnior UFPI
  • André Soares UFPI


This paper proposes a new circuit reallocation algorithm that considers the effects of physical layer in transparent elastic optical networks, called Just One Circuit Reallocation (JOC).The JOC algorithm reallocates just one already established circuit to avoid the blocking of new circuit request due to impairments in the physical layer. The results of the JOC algorithm were compared to three other algorithms: Circuit Reallocation Strategy Physical Layer (CRS-PL), Circuit Reallocation for Block Reduction related to the QoT of the circuits (R-RQoT) and Make-Before-Break (MBBr). The reallocation algorithms are evaluated under the bandwidth blocking probability (BBP), circuit blocking probability (CBP) and the number of reallocated circuits (NRC) for USA and EON topologies. Besides, we also evaluated the performance of reallocation algorithms using Complete Sharing, K-Shortest Path Computation, Modified Dijkstra Paths Computation and K-Shortest Path with Reduction of QoTO to routing and spectrum assignment. Simulation results show that the proposed algorithm exhibits better performance than the CRS-PL, R-RQoT and MBBr algorithms with regard to BBP, PBC and NRC. In terms of BBP, our algorithm presented minimum reductions of approximately 65.36% e 55.6% for the USA and EON topology, respectively.


Araujo, S., Barbosa, E., dos Reis Junior, J. V., and Soares, A. (2018). R-rqot: Uma nova estratégia de realocação de circuito ciente dos efeitos de camada física para redes Ópticas elásticas. Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC).

Araújo, S., Soares, A., Fontinele, A., Campelo, D. R., d. R. Jênior, J. V., and Barbosa, (2018). Circuit reallocation strategy aware of the physical layer effects for elastic optical networks. In 2018 IEEE Symposium on Computers and Communications (ISCC), pages 00970-00975.

Ba, S., Chatterjee, B. C., and Oki, E. (2017). Defragmentation scheme based on exchanging primary and backup paths in 1+1 path protected elastic optical networks. IEEE/ACM Transactions on Networking, 25(3):1717-1731.

Beyranvand, H. and Salehi, J. A. (2013). A quality-of-transmission aware dynamic routing and spectrum assignment scheme for future elastic optical networks. Journal of Lightwave Technology, 31(18):3043-3054.

Chatterjee, B. C., Ba, S., and Oki, E. (2018). Fragmentation problems and management approaches in elastic optical networks: A survey. IEEE Communications Surveys Tutorials, 20(1):183-210.

Chatterjee, B. C., Sarma, N., and Oki, E. (2015). Routing and spectrum allocation in elastic optical networks: A tutorial. IEEE Communications Surveys and Tutorials, 17(3):1776-1800.

Cugini, F., Paolucci, F., Meloni, G., Berrettini, G., Secondini, M., Fresi, F., Sambo, N., Poti, L., and Castoldi, P. (2013). Push-pull defragmentation without traffic disruption in flexible grid optical networks. Journal of Lightwave Technology, 31(1):125-133.

Fontinele, A., Santos, I., Neto, J. N., Campelo, D. R., and Soares, A. (2017). An efficient IA-RMLSA algorithm for transparent elastic optical networks. Computer Networks, 118:1-14.

Habibi, M. and Beyranvand, H. (2019). Impairment-aware manycast routing, modulation level, and spectrum assignment in elastic optical networks. IEEE/OSA Journal of Optical Communications and Networking, 11(5):179-189.

Johannisson, P. and Agrell, E. (2014). Modeling of nonlinear signal distortion in fiber-optic networks. Journal of Lightwave Technology, 32(23):4544-4552.

Poggiolini, P. and Jiang, Y. (2017). Recent advances in the modeling of the impact of nonlinear fiber propagation effects on uncompensated coherent transmission systems. IEEE/OSA Journal of Lightwave Technology, 35(3):458-480.

Takagi, T., Hasegawa, H., i. Sato, K., Sone, Y., Hirano, A., and Jinno, M. (2011). Disruption minimized spectrum defragmentation in elastic optical path networks that adopt distance adaptive modulation. In 2011 37th European Conference and Exhibition on Optical Communication, pages 1-3.

Wang, C., Shen, G., and Peng, L. (2016). Protection lightpath-based hitless spectrum defragmentation for distance adaptive elastic optical networks. Opt. Express, 24(5):4497-4511.

Wang, R. and Mukherjee, B. (2012). Spectrum management in heterogeneous bandwidth networks. In 2012 IEEE Global Communications Conference (GLOBECOM), pages 2907-2911.

Yan, L., Agrell, E., Wymeersch, H., Johannisson, P., Di Taranto, R., and Brandt-Pearce, M. (2015). Link-level resource allocation for flexible-grid nonlinear fiber-optic communication systems. IEEE Photonics Technology Letters, 27(12):1250-1253.

Zhang, M., Shi, W., Gong, L., Lu, W., and Zhu, Z. (2013). Bandwidth defragmentation in dynamic elastic optical networks with minimum traffic disruptions. In 2013 IEEE International Conference on Communications (ICC), pages 3894-3898.

Zhang, M., You, C., Jiang, H., and Zhu, Z. (2014). Dynamic and adaptive bandwidth defragmentation in spectrum-sliced elastic optical networks with time-varying traffic. Journal of Lightwave Technology, 32(5):1014-1023.
Como Citar

Selecione um Formato
ARAÚJO, Selles; LACERDA, Jurandir; FONTINELE, Alexandre; LEÃO, Érico; REIS JÚNIOR, José V. dos; SOARES, André. Physical Layer-Aware Circuit Reallocation to Prevent Request Blocking in Elastic Optical Networks. In: SIMPÓSIO BRASILEIRO DE REDES DE COMPUTADORES E SISTEMAS DISTRIBUÍDOS (SBRC), 41. , 2023, Brasília/DF. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 295-308. ISSN 2177-9384. DOI:

Artigos mais lidos do(s) mesmo(s) autor(es)