Análise da Cobertura Espacial de uma Rede de Sensores Baseada em Ônibus Urbanos

  • Pedro Cruz UFRJ
  • Rodrigo S. Couto UERJ
  • Luís Henrique M. K. Costa UFRJ

Abstract


Smart Cities can employ urban buses with sensors to enlarge their In this context, this paper analyses coverage, with low infrastructure needs. the coverage of a mobile wireless sensor network where mobility is provided by urban buses. We propose a model and an optimization problem to maximize the coverage for a given number of sensing buses The problem is then applied to a real data set of buses from Rio de Janeiro, to evaluate the maximum coverage for a limited number of sensors. Results show that if 18% of the fleet are equipped with sensing nodes, it can cover at least 94% of the streets of Rio de Janeiro that have some sort of bus circulation, the equivalent to 5,606 km of streets.

References

Church, R. e Velle, C. R. (1974). The maximal covering location problem. Papers in regional science, 32(1):101–118.

Cruz, P., Couto, R. S. e Costa, L. H. M. K. (2017a). An algorithm for sink positioning in bus-assisted smart city sensing. Future Generation Computer Systems.

Cruz, P., Couto, R. S. e Costa, L. H. M. K. (2017b). Um algoritmo de posicionamento de pontos de coleta para uma rede de sensores baseada em ônibus urbanos. XXXV Simpósio Brasileiro de Redes de Computadores e Sistemas Distribudos.

Cruz, P., da Silva, F. F., Pacheco, R. G., Couto, R. S., Velloso, P. B., Campista, M. E. M. e Costa, L. H. M. K. (2017c). Sensingbus: um sistema de sensoriamento baseado em ônibus urbanos. XXXV Simpósio Brasileiro de Redes de Computadores e Sistemas Distribudos.

Current, J. R. e Schilling, D. A. (1990). Analysis of errors due to demand data aggregation in the set covering and maximal covering location problems. Geographical Analysis, 22(2):116–126.

Dong, W., Guan, G., Chen, Y., Guo, K. e Gao, Y. (2015). Mosaic: Towards city scale sensing with mobile sensor networks. Em IEEE International Conference on Parallel and Distributed Systems (ICPADS), p. 29–36. IEEE.

Du, R., Chen, C., Yang, B., Lu, N., Guan, X. e Shen, X. (2015). Effective urban trafc monitoring by vehicular sensor networks. IEEE Transactions on Vehicular Technology, 64(1):273–286.

Ekici, E., Gu, Y. e Bozdag, D. (2006). Mobility-based communication in wireless sensor networks. IEEE Communications Magazine, 44(7):56 – 62.

Fiore, M., Nordio, A. e Chiasserini, C.-F. (2016). Driving factors toward accurate mobile opportunistic sensing in urban environments. IEEE Transactions on Mobile Computing, 15(10):2480–2493.

Google (2017). Google maps API snap to roads. Disponível em https:// developers.google.com/maps/documentation/roads/snap.

Gubbi, J., Buyya, R., Marusic, S. e Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7):1645–1660.

IPLANRIO (2016). Descrição do dataset conjunto GPS ônibus. Disponível em http://data.rio/dataset/gps-de-onibus.

Kamienski, C., Biondi, G. O., Borelli, F. F., Heideker, A., Ratusznei, J. e Kleinschmidt, J. H. (2016). Computação urbana: Tecnologias e aplicações para cidades inteligentes. Minicursos SBRC.

Kaplan, E. D. e Hegarty, C. J. (2006). Understanding gps-principles and applications second edition. artech house. Inc., MA, p. 153–173.

Liu, B., Brass, P., Dousse, O., Nain, P. e Towsley, D. (2005). Mobility improves coverage of sensor networks. Em Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing. MobiHoc.

Marjovi, A., Arre, A. e Martinoli, A. (2015). High resolution air pollution maps in urban environments using mobile sensor networks. Em International Conference on Distributed Computing in Sensor Systems (DCOSS), p. 11 – 20. IEEE.

Passos, I. P. (2017). Rio em síntese. Disponível em http://www.data.rio/pages/rio-em-sntese-2.

Pipino, L. L., Lee, Y. W. e Wang, R. Y. (2002). Data quality assessment. Communications of the ACM, 45(4):211–218.

Santos, B. P., Silva, L. A., Celes, C. S., Borges, J. B., Neto, B. S. P., Vieira, M. A. M., Vieira, L. F. M., Goussevskaia, O. N. e Loureiro, A. A. (2016). Internet das coisas: da teoria à prática. p. 1–50.

Sta, H. B. (2016). Quality and the efciency of data in “smart-cities”. Future Generation Computer Systems.

Zanella, A., Bui, N., Castellani, A., Vangelista, L. e Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1):22–32.

Zhao, D., Ma, H., Liu, L. e Li, X.-Y. (2015). Opportunistic coverage for urban vehicular sensing. Computer Communications, 60:71–85.

Zhu, Y., Li, Z., Zhu, H., Li, M. e Zhang, Q. (2013). A compressive sensing approach to urban trafc estimation with probe vehicles. IEEE Transactions on Mobile Computing, 12(11):2289–2302.

Zoysa, K. D., Keppitiyagama, C., Seneviratne, G. P. e Shihan, W. W. A. T. (2007). A public transport system based sensor network for road surface condition monitoring. Em ACM SIGCOMM (NSDR). ACM.
Published
2018-05-10
CRUZ, Pedro; COUTO, Rodrigo S.; COSTA, Luís Henrique M. K.. Análise da Cobertura Espacial de uma Rede de Sensores Baseada em Ônibus Urbanos. In: BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 36. , 2018, Campos do Jordão. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2018 . p. 921-934. ISSN 2177-9384. DOI: https://doi.org/10.5753/sbrc.2018.2468.

Most read articles by the same author(s)

1 2 > >>