Distributed Control And Reorganization Of Heterogeneous Vehicle Platoons Subject to Time Delay and Limited Communication Range

  • Daniel A. Godinho UFMG
  • Armando A. Neto UFMG
  • Fernando O. Souza UFMG

Resumo


Pelotões autônomos surgiram como alternativas eficientes para o transporte de carga, e extensas pesquisas foram realizadas para abordar questões de segurança e eficiência. No entanto, a maior parte da literatura existente assume conectividade contínua entre veículos de pelotão, desconsiderando alcances de comunicação limitados e atrasos. Neste trabalho, focamos no desafio de manter a conectividade e a estabilidade nos pelotões, mesmo em caso de desconexão total. Nosso objetivo é aumentar a tolerância a vários fatores, incluindo saídas de agentes, elementos externos (por exemplo, semáforos e veículos conduzidos por humanos) e condições iniciais não ideais, melhorando assim a segurança do tráfego em cenários de tráfego misto. Ao tratar a alteração de estado como um problema de rastreamento de referência, propomos um procedimento de projeto que garante estabilidade e erro de espaçamento zero em estado estacionário. Por meio de simulações baseadas em agentes e não lineares, demonstramos a eficácia do nosso protocolo de controle, permitindo que os veículos cheguem ao consenso com o pelotão mesmo quando começam desconectados dos demais.

Referências

Abdelgadir, M., Saeed, R., and Babiker, A. (2016). Vehicular ad-hoc networks (VANETs) dynamic performance estimation routing model for city scenarios. In Int. Conf. Inform. Sci. Commun. Technol. (ICISCT), pages 1–8.

Amoozadeh, M., Deng, H., Chuah, C.-N., Zhang, H. M., and Ghosal, D. (2015). Platoon management with cooperative adaptive cruise control enabled by VANET. Vehicular Communications, 2(2):110–123.

Antonelli, G. and Chiaverini, S. (2006). Kinematic control of platoons of autonomous vehicles. IEEE Trans. on Robotics, 22(6):1285–1292.

Bian, Y., Zheng, Y., Li, S., Xu, Q., Wang, J., and Li, K. (2019). Behavioral cooperation of multiple connected vehicles with directed acyclic interactions using feedforward-feedback control. In Int. Symp. on Advanced Vehicle Control, AVEC.

Alexey Dosovitskiy, Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). CARLA: An open urban driving simulator. In Proc. of the 1st Annual Conf. on Robot Learning, pages 1–16.

Paranjothi, A., Atiquzzaman, M., and Khan, M. S. (2020). Pmcd: Platoon - merging approach for cooperative driving. Internet Technology Letters, 3(1):e139.

Dey, K. C., Yan, L., Wang, X., Wang, Y., Shen, H., Chowdhury, M., Yu, L., Qiu, C., and Soundararaj, V. (2016). A review of communication, driver characteristics, and controls aspects of cooperative adaptive cruise control (CACC). IEEE Trans. on Intelligent Transportation Systems, 17(2):491–509.

Ghaedsharaf, Y., Somarakis, C., and Motee, N. (2018). Performance of second-order platoon of vehicles in presence of time-delay and noise. In American Control Conf., ACC, pages 4887–4892.

Guo, G. and Yue, W. (2012). Autonomous platoon control allowing range-limited sensors. IEEE Trans. on Vehicular Technology, 61(7):2901–2912.

Huang, J. and Tseng, Y. (2018). The steady-state distribution of rehealing delay in an intermittently connected highway VANET. IEEE Trans. on Vehicular Technology, 67(10):10010–10021.

Li, Y., Tang, C., Peeta, S., and Wang, Y. (2019). Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays. IEEE Trans. on Intelligent Transportation Systems, 20(6):2209–2219.

Maiti, S., Winter, S., Kulik, L., and Sarkar, S. (2020). The impact of flexible platoon formation operations. IEEE Trans. on Intelligent Vehicles, 5(2):229–239.

Middleton, R. H. and Braslavsky, J. H. (2010). String instability in classes of linear time invariant formation control with limited communication range. IEEE Trans. on Automatic Control, 55(7):1519–1530.

Neto, A. A., Mozelli, L. A., and Souza, F. O. (2019). Control of air-ground convoy subject to communication time delay. Computers & Electrical Engineering, 76:213 – 224.

Parkinson, S., Ward, P., Wilson, K., and Miller, J. (2017). Cyber threats facing autonomous and connected vehicles: Future challenges. IEEE Trans. on Intelligent Transportation Systems, 18(11):2898–2915.

Santini, S., Salvi, A., Valente, A. S., Pescapè, A., Segata, M., and Cigno, R. L. (2019). Platooning maneuvers in vehicular networks: A distributed and consensus-based approach. IEEE Trans. on Intelligent Vehicles, 4(1):59–72.

Souza, F. O., Torres, L. A. B., Mozelli, L. A., and Neto, A. A. (2019). Stability and formation error of homogeneous vehicular platoons with communication time delays. IEEE Trans. on Intelligent Transportation Systems, pages 1–12.

Yan, Z., Jiang, H., Shen, Z., Chang, Y., and Huang, L. (2012). k-connectivity analysis of one-dimensional linear VANETs. IEEE Trans. on Vehicular Technology, 61(1):426–433.

Zhang, H., Chen, Z., and Mo, X. (2017). Effect of adding edges to consensus networks with directed acyclic graphs. IEEE Trans. on Automatic Control, 62(9):4891–4897.

Zhang, L. and Orosz, G. (2016). Motif-based design for connected vehicle systems in presence of heterogeneous connectivity structures and time delays. IEEE Trans. on Intelligent Transportation Systems, 17(6):1638–1651.

Zheng, Y., Bian, Y., Li, S., and Li, S. E. (2021). Cooperative control of heterogeneous connected vehicles with directed acyclic interactions. IEEE Intelligent Transportation Systems Magazine, 13(2):127–141.

Zheng, Y., Li, S., Wang, J., Cao, D., and Li, K. (2016). Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies. IEEE Trans. on Intelligent Transportation Systems, 17:14–26.
Publicado
09/10/2023
Como Citar

Selecione um Formato
GODINHO, Daniel A.; A. NETO, Armando; SOUZA, Fernando O.. Distributed Control And Reorganization Of Heterogeneous Vehicle Platoons Subject to Time Delay and Limited Communication Range. In: CONCURSO DE TESES E DISSERTAÇÕES EM ROBÓTICA - CTDR (DOUTORADO) - SIMPÓSIO BRASILEIRO DE ROBÓTICA E SIMPÓSIO LATINO-AMERICANO DE ROBÓTICA (SBR/LARS), 15. , 2023, Salvador/BA. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2023 . p. 95-106. DOI: https://doi.org/10.5753/sbrlars_estendido.2023.234740.