Slip detection methods and slip direction estimation on Quadruped Robots

  • Paulo Teixeira Vale de Carvalho PUC-Rio
  • Vivian Suzano Medeiros USP
  • Marco Antonio Meggiolaro PUC-Rio

Resumo


Quadruped robots are mobile robots inspired by the locomotion of animals. Although widely studied, challenges such as slip events remain significant. This work compares existing proprioceptive slip detection methods and evaluates a strategy for reducing undesirable detections. A slip direction estimation method is proposed for calculating a filtered slip angle to assess slip behavior and explore its potential as a criterion for slip intensity. To validate the approach, simulations and experiments are conducted using the Go1 robot. Results include a quantitative evaluation of slip detection methods based on the friction cone model, demonstrating consistent outcomes between simulation and experimental data, as well as a correlation between slip angle and slip intensity.
Palavras-chave: Slip, Quadruped, Slip Detection, Slip Direction

Referências

Focchi, M., Barasuol, V., Frigerio, M., Caldwell, D. G., and Semini, C. (2018). Slip detection and recovery for quadruped robots. Springer Proceedings in Advanced Robotics, 3:185–199.

Gangapurwala, S., Geisert, M., Orsolino, R., Fallon, M., and Havoutis, I. (2022). Rloc: Terrain-aware legged locomotion using reinforcement learning and optimal control. IEEE Transactions on Robotics, 38:2908–2927.

Hutter, M., Siegwart, R., Stastny, T., Rudin, K., and Blösch, M. (2017). Robot dynamics lecture notes. Available at: [link]. Accessed: April 2025.

Jenelten, F., Hwangbo, J., Tresoldi, F., Bellicoso, C. D., and Hutter, M. (2019). Dynamic locomotion on slippery ground. IEEE Robotics and Automation Letters, 4:4170–4176.

Kao, I., Lynch, K., and Burdick, J. W. (2008). Contact Modeling and Manipulation, pages 647–669. Springer Berlin Heidelberg, Berlin, Heidelberg.

Kim, H., Kang, D., Kim, M. G., Kim, G., and Park, H. W. (2025). Online friction coefficient identification for legged robots on slippery terrain using smoothed contact gradients. IEEE Robotics and Automation Letters, 10:3150–3157.

Kim, Y., Yu, B., Lee, E. M., Kim, J. H., Park, H. W., and Myung, H. (2022). Step: State estimator for legged robots using a preintegrated foot velocity factor. IEEE Robotics and Automation Letters, 7:4456–4463.

Medeiros, V. S., Escalante, F. M., Becker, M., and Boaventura, T. (2024). Impedance control analysis for legged locomotion in oscillating ground. In Youssef, E. S. E., Tokhi, M. O., Silva, M. F., and Rincon, L. M., editors, Synergetic Cooperation between Robots and Humans, pages 197–208, Cham. Springer Nature Switzerland.

Nisticò, Y., Fahmi, S., Pallottino, L., Semini, C., and Fink, G. (2022). On slip detection for quadruped robots. Sensors, 22:1–14.

Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. (2010). Robotics: Modelling, Planning and Control. Springer Publishing Company, Incorporated.

Sim, O., Jeong, H., Oh, J., Lee, M., Lee, K. K., Park, H. W., and Oh, J. H. (2020). Joint space position/torque hybrid control of the quadruped robot for locomotion and push reaction. Proceedings - IEEE International Conference on Robotics and Automation, pages 2450–2456.

Su, Y., Yang, H., Ding, L., Xu, C., Xu, P., Gao, H., Niu, L., Li, W., Liu, G., and Deng, Z. (2024). A unified foot-terrain interaction model for legged robots contacting with diverse terrains. IEEE/ASME Transactions on Mechatronics, 29:2661–2672.

Sun, P., Qiang, J., Qian, L., and Luo, X. (2023). Learning slip detection for agile locomotion of quadruped robots. 2023 IEEE International Conference on Robotics and Biomimetics, ROBIO 2023, pages 1–6.

Taheri, H. and Mozayani, N. (2023). A study on quadruped mobile robots. Mechanism and Machine Theory, 190:105448.

Teng, S., Mueller, M. W., and Sreenath, K. (2021). Legged robot state estimation in slippery environments using invariant extended kalman filter with velocity update. Proceedings - IEEE International Conference on Robotics and Automation, 2021-May:3104–3110.

Wang, H., Liu, P., Chen, H., Ngoc, P. T. T., Li, B., Li, Y., and Sato, H. (2024). Toward the smooth mesh climbing of a miniature robot using bioinspired soft and expandable claws. IEEE Transactions on Medical Robotics and Bionics, 6:351–361.

Wisth, D., Camurri, M., and Fallon, M. (2023). Vilens: Visual, inertial, lidar, and leg odometry for all-terrain legged robots. IEEE Transactions on Robotics, 39:309–326.

Yan, C., Qin, J., Liu, Q., and Ma, Q. (2024). Slip detection and recovery for quadruped robots via orthogonal decomposition. IEEE Transactions on Industrial Electronics.

Yeom, H., Park, G., and Bae, J. (2024). Design of a human-inspired sensorized and adaptive foot that enhances stability through tensegrity (hi-safest). IEEE Robotics and Automation Letters, 9:4305–4312.

Yoon, Z., Kim, J. H., and Park, H. W. (2024). Invariant smoother for legged robot state estimation with dynamic contact event information. IEEE Transactions on Robotics, 40:193–212.

Zhang, Z., An, H., Wei, Q., and Ma, H. (2023). Learning-based model predictive control for quadruped locomotion on slippery ground. pages 47–52.
Publicado
13/10/2025
CARVALHO, Paulo Teixeira Vale de; MEDEIROS, Vivian Suzano; MEGGIOLARO, Marco Antonio. Slip detection methods and slip direction estimation on Quadruped Robots. In: CONCURSO DE TESES E DISSERTAÇÕES EM ROBÓTICA - CTDR (MESTRADO) - SIMPÓSIO BRASILEIRO DE ROBÓTICA E SIMPÓSIO LATINO-AMERICANO DE ROBÓTICA (SBR/LARS), 16. , 2025, Vitória/ES. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 25-36. DOI: https://doi.org/10.5753/sbrlars_estendido.2025.248268.