Um Esquema Cooperativo para Análise da Presença de Ataques EUP em Redes Ad Hoc de Rádio Cognitivo
Resumo
Nas redes ad hoc de rádio cognitivo, os usuários mal intencionados podem tirar proveito das funcionalidades da tecnologia de rádio cognitivo para realizar ataques de emulação de usuário primário (EUP). Nestes ataques, os usuários mal intencionados imitam as características dos usuários licenciados, visando obter prioridade no uso das bandas de radiofrequências licenciadas e ameaçando o funcionamento da rede. A fim de tratar deste problema, trabalhos na literatura utilizam critérios específicos para detecção de ataques EUP. Tais soluções, contudo, não consideram conjuntamente o uso de múltiplos e diferentes critérios que enriquecem o consenso de inferência sobre a presença de um ataque EUP na rede. Diante deste contexto, este trabalho apresenta INCA, um esquema de múltIplos critérios para aNálise Cooperativa da presença de Ataques EUP em redes ad hoc de rádio cognitivo. O esquema INCA é composto por duas fases. Na primeira, cada usuário não licenciado emprega múltiplos critérios para definir uma hipótese individual da presença dos ataques EUP. Na segunda, essas hipóteses são trocadas entre os seus vizinhos e cada usuário não licenciado calcula a probabilidade final da presença de um ataque EUP através do teorema de Bayes. Os resultados de simulação mostram a melhoria e a eficácia da cooperatividade e do uso de múltiplos critérios quando aplicados simultaneamente.
Referências
Akyildiz, I. F., Lee, W.-Y., and Chowdhury, K. R. (2009). Crahns: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5):810–836.
Anand, S., Jin, Z., and Subbalakshmi, K. (2008). An analytical model for primary user emulation attacks in cognitive radio networks. In IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN, pages 1–6.
Ariananda, D., Lakshmanan, M., and Nikoo, H. (2009). A survey on spectrum sensing techniques for cognitive radio. In Cognitive Radio and Advanced Spectrum Management, CogART. Second International Workshop on, pages 74–79.
Benayoun, R., Roy, B., and Sussman, N. (1966). Manual de reference du programme electre. Note De Synthese et Formaton, 25.
Chen, C., Cheng, H., and Yao, Y.-D. (2011). Cooperative spectrum sensing in cognitive radio networks in the presence of the primary user emulation attack. IEEE Trans. on Wireless Comm., 10(7):2135 –2141.
Chen, R. and Park, J.-M. (2006). Ensuring trustworthy spectrum sensing in cognitive radio networks. In IEEE SDR, pages 110–119.
Chen, R., Park, J.-M., and Reed, J. (2008). Defense against primary user emulation attacks in cognitive radio networks. IEEE Journal on Selected Areas in Comm., 26(1):25–37.
Felice, M. D., Chowdhury, K., Kim, W., Kassler, A., and Bononi, L. (2011). End-to-end protocols for cognitive radio ad hoc networks: An evaluation study. Performance Evaluation, 68(9):859 – 875.
Fragkiadakis, A., Tragos, E., and Askoxylakis, I. (2012). A survey on security threats and detection techniques in cognitive radio networks. IEEE Communications Surveys Tutorials, PP(99):1 – 18.
Jin, Z., Anand, S., and Subbalakshmi, K. (2010). Robust spectrum decision protocol against primary user emulation attacks in dynamic spectrum access networks. In IEEE GLOBECOM, pages 1–5.
Jin, Z., Anand, S., and Subbalakshmi, K. P. (2009). Detecting primary user emulation attacks in dynamic spectrum access networks. In IEEE ICC, pages 2749–2753.
Lee, W.-Y. and Akyldiz, I. F. (2011). A spectrum decision framework for cognitive radio networks. IEEE Trans. on Mobile Computing, 10(2):161–174.
Li, H. and Han, Z. (2010). Dogfight in spectrum: Combating primary user emulation attacks in cognitive radio systems, part i: Known channel statistics. IEEE Trans. on Wireless Comm., 9(11):3566–3577.
Malakooti, B., Thomas, I., Tanguturi, S., Gajurel, S., and Kim, H. (2006). Multiple criteria network routing with simulation results. Industrial Engineering Research Conference (IERC).
Min, A., Kim, K.-H., and Shin, K. (2011). Robust cooperative sensing via state estimation in cognitive radio networks. In IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN, pages 185 –196.
Mitola, J. and Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Pers. Comm., 6(4):13–18.
Saaty, T. L. (1980). The analytic hierarchy process. McGraw Hill.
Stevenson, C., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S., and Caldwell, W. (2009). Ieee 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1):130–138.
Subhedar, M. and Birajdar, G. (2011). Spectrum sensing techniques in cognitive radio networks: A survey. International Journal of NextGeneration Networks, 3(2):37–51.
Tan, Y., Hong, K., Sengupta, S., and Subbalakshmi, K. P. (2011). Using sybil identities for primary user emulation and byzantine attacks in DSA networks. In IEEE GLOBECOM, pages 1–5.
Wang, X. and Triantaphyllou, E. (2008). Ranking irregularities when evaluating alternatives by using some electre methods. Omega, 36(1):45 – 63.
Wild, B. and Ramchandran, K. (2005). Detecting primary receivers for cognitive radio applications. In IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN, pages 124–130.
Yuan, Z., Niyato, D., Li, H., and Han, Z. (2011). Defense against primary user emulation attacks using belief propagation of location information in cognitive radio networks. In IEEE Wireless Communications and Networking Conference (WCNC), pages 599 – 604.
Z. Jin, S. A. and Subbalakshmi, K. P. (2010). Neat: A neighbor assisted spectrum decision protocol for resilience against primary user emulation attacks. Technical report, Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ.
Zhang, W., Mallik, R., and Letaief, K. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12):5761–5766.