REDIC: Recomendação de Influenciadores Digitais do Queijo Artesanal Brasileiro

  • Nedson Donato Soares UFJF
  • Regina Braga UFJF
  • José Maria N. David UFJF
  • Kennya Beatriz Siqueira Embrapa
  • Thallys da Silva Nogueira UFJF
  • Emerson Wendelin Campos Embrapa Gado de Leite
  • Emerson Augusto Priamo Moraes IF Sudeste MG
  • Priscila Vanessa Zabala Capriles Goliatt UFJF

Resumo


The advancement of information technology makes social media networks increasingly gain popularity and insertion in daily life aspects. Thus, the analysis of people's opinions and habits is essential for many companies' modernization and survival. On social networks, people generally share their views and visit other people's opinions about products, news, and trends, and the concept of "influential person" emerges. An influential person (or social media influencer) today is considered a marketing strategy. The Brazilian dairy industry has been standing out every year, and one of the promising areas is cheese production. The 2019 annual report by ABLV (Associação Brasileira da Indústria de Lácteos Longa Vida) indicates that there was an increase of 32% in liters of milk destined for cheese production in Brazil compared to 2009, which is greater than the percentage growth of milk UHT (26%). Intending to collect information from social networks to find influential people, who appreciate artisanal cheeses, and who can influence potential new consumers, this work presents REDIC, a proposal for analysis, recommendation, and content propagation network, considering the Brazilian artisanal cheese market. REDIC classifies the user's content and interactions using ontologies and complex networks, deriving new relationships and allowing interconnecting information on different social networks. REDIC was developed to support the market research of artisanal cheeses in a renowned Brazilian agribusiness institution. The results obtained through feasibility studies showed that the solution allows the search for communities of digital influencers who talk about artisanal cheeses and the dissemination of information on the network.

Palavras-chave: Recommendation System, Social Network Analysis, SNA, Ontology, Social Network

Referências

Wesley Wing Hong Cheng, Ernest Tak Hei Lam and Dickson K.W. Chiu. 2020. Social media as a platform in academic library marketing: A comparative study. The Journal of Academic Librarianship, vol. 46, no. 5, (Sep, 2020). DOI: 10.1016/j.acalib.2020.102188.

Ravneet Kaur and Sarbjeet Singh. 2017. A comparative analysis of structural graph metrics to identify anomalies in online social networks. Computers & Electrical Engineering, vol. 57, (Jan, 2017), 294–310. DOI: 10.1016/j.compeleceng.2016.11.018. 

Dariusz Król. 2014. On Modelling Social Propagation Phenomenon, in Intelligent Information and Database Systems. Springer International Publishing, 227–236.

John Scott. 1988. Social network analysis. Sociology, vol. 22, no. 1, 109–127.

Fabián Riquelme and Pablo González-Cantergiani. 2016. Measuring user influence on Twitter: A survey. Information processing & management, vol. 52, no. 5, 949–975. 

Ladislav Pilař, Tereza Balcarová, Stanislav Rojı́k, Ivana Tichá and Jana Poláková. 2018. Customer experience with farmers' markets: what hashtags can reveal. International Food and Agribusiness Management Review, vol. 21, no. 6, (Jul, 2018), 755–770. DOI: 10.22434/ifamr2017.0039.

Youngsang Cho, Junseok Hwang and Daeho Lee. 2012. Identification of effective opinion leaders in the diffusion of technological innovation: A social network approach. Technological Forecasting and Social Change, vol. 79, no. 1, (Jan, 2012), 97–106. DOI: 10.1016/j.techfore.2011.06.003.

Francesco Bonchi, Carlos Castillo, Aristides Gionis and Alejandro Jaimes. 2011. Social Network Analysis and Mining for Business Applications, ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, (Apr, 2011), 1–37. DOI: 10.1145/1961189.1961194. 

Danielly Sorato and Renato Fileto. 2019. Linguistic Pattern Mining for Data Analysis in Microblog Texts using Word Embeddings. In Proceedings of the XV Brazilian Symposium on Information Systems - SBSI19. DOI: 10.1145/3330204.3330228. 

Kennya B. Siqueira. 2019. O mercado consumidor de leite e derivados, Embrapa Gado de Leite - Circular Técnica (infoteca-e), 1-17.

Vinícius V. P. D. R. Nardy, Glauco R. Carvalho and Denis T. da Rocha. 2019. Mercado de leite fluido e queijos no Brasil: uma análise de 2005 a 2016. Embrapa Gado de Leite, 1-5.

Nedson D. Soares, Regina Braga, José Maria N. David, Kennya B. Siqueira, Victor Ströele and Fernanda Campos. Uma Arquitetura para a Recomendação de Consumidores de Queijo Artesanal Brasileiro. In Anais do Brazilian e-Science Workshop (BRESCI 2020). DOI: 10.5753/bresci.2020.11189.

Edson Talamini and. Gabriel Murad V. Ferreira. 2010. Merging netchain and social network: Introducing the social netchain concept as an analytical framework in the agribusiness sector. African journal of business management, Academic Journals, 2981-2993.

Michael Trusov, Anand V. Bodapati and Randolph E. Bucklin. 2010. Determining Influential Users in Internet Social Networks. Journal of Marketing Research, vol. 47, no. 4, (Aug, 2010), 643–658. DOI: 10.1509/jmkr.47.4.643.

Bilal Abu-Salih, Pornpit Wongthongtham and Kit Yan Chan. 2018. Twitter mining for ontology-based domain discovery incorporating machine learning. Journal of Knowledge Management, vol. 22, no. 5, (Jun, 2018), 949–981. DOI: 10.1108/jkm-11-2016-0489.

Nicola Guarino. 1998. Formal ontology in information systems. Proceedings of the first international conference (FOIS'98), Trento, Italy IOS press, 3-15. 

Feng Li and Timon C. Du. 2011. Who is talking? An ontology-based opinion leader identification framework for word-of-mouth marketing in online social blogs. Decision Support Systems, vol. 51, no. 1, (Apr, 2011), 190–197. DOI: 10.1016/j.dss.2010.12.007. 

Abolfazl Aleahmad, Payam Karisani, Maseud Rahgozar and Farhad Oroumchian. 2016. OLFinder: Finding opinion leaders in online social networks. Journal of Information Science, vol. 42, no. 5, (Jul, 2016), 659–674. DOI: 10.1177/0165551515605217. 

Manh Cuong Pham, Matthias Jarke, Ralf Klamma and Yiwei Cao. 2011. A Clustering Approach for Collaborative Filtering Recommendation Using Social Network Analysis. Verlag der Technischen Universität Graz. DOI: 10.3217/JUCS-017-04-0583.

Rafael Escalfoni, Mônica F. da Silva and Jonice Oliveira. 2020. Analyzing Social Relations in Startup Ecosystems. In XVI Brazilian Symposium on Information Systems. DOI: 10.1145/3411564.3411617. 

Loet Leydesdorff. 2007. Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, vol. 58, no. 9, 1303–1319. 

Alan R. Hevner, Salvatore T. March, Jinsoo Park and Sudha Ram. 2004. Design science in information systems research. MIS quarterly, 75–105. 

Tiancheng Lou and Jie Tang. 2013. Mining structural hole spanners through information diffusion in social networks. In Proceedings of the 22nd international conference on World Wide Web - WWW 13. DOI: 10.1145/2488388.2488461. 

James Sinclair and Michael Cardew-Hall. 2007. The folksonomy tag cloud: when is it useful?, Journal of Information Science, vol. 34, no. 1, (May, 2007), 15–29. DOI: 10.1177/0165551506078083. 

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte and Etienne Lefebvre. 2008. Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10, (Oct, 2008). DOI: 10.1088/1742-5468/2008/10/p10008.

Victor R. Basili, Gianluigi Caldiera and Dieter Rombach. 1994. The goal question metric approach. Encyclopedia of Software Engineering.

Ulrik Brandes. 2001. A Faster Algorithm for Betweenness Centrality, Journal of Mathematical Sociology 25(2), 163-177.
Publicado
07/06/2021
Como Citar

Selecione um Formato
SOARES, Nedson Donato; BRAGA, Regina; DAVID, José Maria N.; SIQUEIRA, Kennya Beatriz; NOGUEIRA, Thallys da Silva; CAMPOS, Emerson Wendelin; MORAES, Emerson Augusto Priamo; GOLIATT, Priscila Vanessa Zabala Capriles. REDIC: Recomendação de Influenciadores Digitais do Queijo Artesanal Brasileiro. In: SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 17. , 2021, Uberlândia. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2021 .

Artigos mais lidos do(s) mesmo(s) autor(es)