Predicting Chronic Phase Progression in Chikungunya Patients Using Machine Learning Models

  • Gabriel Masson UPE
  • Kaio Viana UPE
  • Sebastião Rogério da Silva Neto UPE
  • Jamile Taniele-Silva UFPE
  • Gabriela Cavalcanti Lima Albuquerque UFPE
  • Moacyr Jesus Barreto de Melo Rêgo UFPE
  • Raphael A. Dourado UPE
  • Patricia Takako Endo UPE

Resumo


Context: This research is set within the domain of neglected tropical diseases, specifically focusing on Chikungunya, a mosquito-borne viral disease. The study is motivated by the prevalence of Chikungunya in Brazil and the challenges associated with its chronic symptoms. Problem: The primary issue addressed is the difficulty in predicting which patients with acute Chikungunya will progress to the chronic phase. This progression leads to prolonged joint pain and other severe symptoms, affecting quality of life. Solution: We evaluate machine learning models, trained to predict the likelihood of acute Chikungunya cases progressing to the chronic phase. Theory of IS: The Information Processing Theory serves as the theoretical foundation, explaining how data is transformed into actionable insights. In this context, machine learning models act as information processors, learning from a real dataset how to produce predictions that can aid clinical decisions. Method: The methodology involves a quantitative analysis of different machine learning models, using documented data from Chikungunya diagnosed patients. The goal is to assess the models’ performance in predicting disease progression. Summary of Results: Preliminary results show that the XGBoost model demonstrates 79.31% of recall and 74.19% of f1-score in distinguishing patients likely to develop chronic conditions. Contributions and impact on the field of IS: This study contributes to both information systems and healthcare by enhancing the process of decision-making for health professionals. The implications are significant for academic research and practical application (including SUS applicability), providing information that facilitate earlier and more targeted treatments, focusing on patient quality of life.

Palavras-chave: Chikungunya, Neglected Tropical Diseases, Machine Learning, Information Processing Theory, Data Analysis

Referências

Pan American Health Organization. n.d. Chikungunya - paho/who data - weekly cases. [link]. Accessed: September 18, 2024. (n.d.).

Ministério da Saúde. 2022. Serviço de Vigilância Epidemiológica - Boletim Epidemiológico: Monitoramento dos casos de arboviroses urbanas causados por vírus transmitidos pelo mosquito Aedes (dengue, chikungunya e zika), semanas epidemiológicas 1 a 52, 2021. Tech. rep. 53. n48. [link].

WMde Souza et al. 2024. Chikungunya: a decade of burden in the americas. The Lancet Regional Health - Americas, 30, 100673. DOI: 10.1016/j.lana.2023.100673.

SC Weaver and M Lecuit. 2015. Chikungunya virus and the global spread of a mosquito-borne disease. The New England Journal of Medicine, 372, 13, 1231–1239. DOI: 10.1056/NEJMra1406035.

Ministério da Saúde. 2017. Chikungunya: manejo clínico. Disponível em: [link]. Ministério da Saúde, Brasília. isbn: 978-85-334-2494-4.

Giovanny da Silva Duarte, Adrian D Jones, Lydiana P de Goes Cavalcanti, et al. 2023. Multicenter study of the natural history and therapeutic responses of patients with chikungunya, focusing on acute and chronic musculoskeletal manifestations – a study protocol from the clinical and applied research in chikungunya (replick network). BMC Infectious Diseases, 23, 1, 499. DOI: 10.1186/s12879-023-08292-y.

RMM Brito, MF de Melo, JV Fernandes, JG Valverde, PM Matta Guedes, JMG de Araújo, and MSL Nascimento. 2024. Acute chikungunya virus infection triggers a diverse range of t helper lymphocyte profiles. Viruses, 16, 9, 1387. DOI: 10.3390/v16091387.

S. R. Da Silva Neto, T. Tabosa Oliveira, I. V. Teixeira, S. B. Aguiar de Oliveira, V. Souza Sampaio, T. Lynn, and P. T. Endo. 2022. Machine learning and deep learning techniques to support clinical diagnosis of arboviral diseases: a systematic review. PLoS Neglected Tropical Diseases, 16, 1, e0010061.

S. R. Da Silva Neto, T. Tabosa, L. Medeiros Neto, I. V. Teixeira, S. Sadok, V. De Souza Sampaio, and P. T. Endo. 2023. Binary models for arboviruses classification using machine learning: a benchmarking evaluation.

W. Arrubla-Hoyos, J.G. Gómez, and E. De-La-Hoz-Franco. 2024. Differential classification of dengue, zika, and chikungunya using machine learning— random forest and decision tree techniques. Informatics, 11, 69. DOI: 10.3390/informatics11030069.

W. Arrubla-Hoyos, J.G. Gómez, and E. De-La-Hoz-Franco. 2024. Methodology for the differential classification of dengue and chikungunya according to the paho 2022 diagnostic guide. Viruses, 16, 7, (July 2024), 1088. DOI: 10.3390/v16071088.

Mariano Pimentel and Hugo Funks. 2012. Sistemas Colaborativo. Elsevier Editora Ltda, Rio de Janeiro, RJ, Brazil. isbn: 978-85-352-4669-6.

W. A. Kusuma, A. S. Rahmi, and R. Heryanto. 2019. Implementation of hybrid sampling technique for predicting active compound and protein interaction in unbalanced dataset. IOP Conference Series: Earth and Environmental Science, 335, 012005. DOI: 10.1088/1755-1315/335/1/012005.

A. Ali, S. M. Shamsuddin, and A. L. Ralescu. 2015. Classification with class imbalance problem: a review. International Journal of Advanced Soft Computing and its Applications, 7, 3, 176–204.

Jie Miao and Liyuan Niu. 2016. A survey on feature selection. Procedia Computer Science, 91, 919–926. DOI: 10.1016/j.procs.2016.07.111.

Naoual El Aboudi and Laila Benhlima. 2016. Review on wrapper feature selection approaches. In 2016 International Conference on Engineering & MIS (ICEMIS). IEEE, 1–5. DOI: 10.1109/ICEMIS.2016.7745366.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: a next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2623–2631. DOI: 10.1145/3292500.3330701.

James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 2, 281–305.

Jia Wu, Xiaojun Zhu, Zhipeng Lin, and Weiqing Ma. 2019. Hyperparameter optimization for machine learning models based on bayesian optimization. Journal of Electronic Science and Technology, 17, 1, 26–40. DOI: 10.11989/JEST.1674-862X.80904120.

Daniel Berrar. 2019. Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, 1, April, 542–545.

Quan Zou and et al. 2016. Finding the best classification threshold in imbalanced classification. Big Data Research, 5, 2–8. DOI: 10.1016/j.bdr.2015.12.001.

C. Esposito, G. A. Landrum, N. Schneider, N. Stiefl, and S. Riniker. 2021. GHOST: Adjusting the Decision Threshold to Handle Imbalanced Data in Machine Learning. Journal of Chemical Information and Modeling, 61, 6, 2623–2640. DOI: 10.1021/acs.jcim.1c00160.

E. B. Martins, M. S. Quintana, M. F. Silva, F. de Bruycker-Nogueira, I. C. Moraes, C. D. Rodrigues, and G. A. Calvet. 2023. Predictors of chronic joint pain after chikungunya virus infection in the inovachik prospective cohort study. Journal of Clinical Virology, 169, 105610. DOI: 10.1016/j.jcv.2023.105610.

L. de Moraes, T. Cerqueira-Silva, V. Nobrega, K. Akrami, L.A. Santos, C.orge, et al. 2020. A clinical scoring system to predict long-term arthralgia in chikungunya disease: a cohort study. PLOS Neglected Tropical Diseases, 14, 7, e0008467. DOI: 10.1371/journal.pntd.0008467.

CDS Lázari et al. 2023. Clinical markers of post-chikungunya chronic inflammatory joint disease: a brazilian cohort. PLoS Neglected Tropical Diseases, 17, 1, e0011037. DOI: 10.1371/journal.pntd.0011037.

S.G. Shaikh, B.S. Kumar, G. Narang, and N.N. Pachpor. 2024. Hybrid machine learning method for classification and recommendation of vector-borne disease. J. Auton. Intell., 7, 1–14. DOI: 10.32629/jai.v7i2.797.

L. M. Neto, S. Rogerio da S. Neto, and P. T. Endo. 2023. A comparative analysis of converters of tabular data into image for the classification of arboviruses using convolutional neural networks. PLOS ONE, 18, 12, e0295598. DOI: 10.1371/journal.pone.0295598.

Pan American Health Organization. 2022. Guidelines for the clinical diagnosis and treatment of dengue, chikungunya, and zika. Pan American Health Organization (PAHO). isbn: 978-92-75-12488-8.
Publicado
19/05/2025
MASSON, Gabriel; VIANA, Kaio; SILVA NETO, Sebastião Rogério da; TANIELE-SILVA, Jamile; ALBUQUERQUE, Gabriela Cavalcanti Lima; RÊGO, Moacyr Jesus Barreto de Melo; DOURADO, Raphael A.; ENDO, Patricia Takako. Predicting Chronic Phase Progression in Chikungunya Patients Using Machine Learning Models. In: SIMPÓSIO BRASILEIRO DE SISTEMAS DE INFORMAÇÃO (SBSI), 21. , 2025, Recife/PE. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2025 . p. 154-161. DOI: https://doi.org/10.5753/sbsi.2025.246401.

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 > >>