Únicos, mas não incomparáveis: abordagens para identificação de similaridades em respostas emocionais de diferentes indivíduos ao mesmo estímulo audiovisual
Resumo
Understanding human emotional behavior is a complex but essential task when aiming to offer a better user experience through the incorporation of Affective Computing techniques. The integration of these techniques can lead to more intuitive and emotionally intelligent interactions between users and systems. In a society characterized by ethnic and cultural diversity, it is also necessary to understand how different individuals react to a given stimulus so that adaptations and interventions in the software can be effective. In this context, this study discusses two approaches to comparing emotional responses of different individuals to the same emotional stimulus. By leveraging advanced data analysis and machine learning methods, the research aims to provide deeper insights into emotional patterns. In addition to highlighting the importance of discussing the characteristics and particularities of each approach, the study presents a validation of these approaches, identifying similarities - and distinctions - in the emotional responses of 39 individuals. The results not only demonstrate the effectiveness of the approaches but also suggest their complementarity.
Referências
Bert N. Bakker, Gijs Schumacher, Claire Gothreau, and Kevin Arceneaux. 2020. Conservatives and liberals have similar physiological responses to threats. Nature Human Behaviour 4, 6 (Feb. 2020), 613–621. DOI: 10.1038/s41562-020-0823-z
Simone Diniz Junqueira Barbosa, Bruno Santana da Silva, Milene Selbach Silveira, Isabela Gasparini, Ticianne Darin, and Gabriel Diniz Junqueira Barbosa. 2021. Interação Humano-Computador e Experiência do Usuário. Autopublicação.
Merve Boğa, Mehmet Koyuncu, Gülin Kaça, and Turan Onur Bayazıt. 2022. Comparison of emotion elicitation methods: 3 methods, 3 emotions, 3 measures. Current Psychology 42, 22 (April 2022), 18670–18685. DOI: 10.1007/s12144-022-02984-5
Alan S. Cowen, Dacher Keltner, Florian Schroff, Brendan Jou, Hartwig Adam, and Gautam Prasad. 2020. Sixteen facial expressions occur in similar contexts worldwide. Nature 589, 7841 (Dec. 2020), 251–257. DOI: 10.1038/s41586-020-3037-7
Thiago Henrique Coelho Tavares Da Silva, Matheus Dantas Cavalcanti, Felipe Melo Feliciano De Sá, Isaac Nóbrega Marinho, Daniel De Queiroz Cavalcanti, and Valdecir Becker. 2022. Visualization of brainwaves using EEG to map emotions with eye tracking to identify attention in audiovisual workpieces. In Proceedings of the Brazilian Symposium on Multimedia and the Web (Curitiba, Brazil) (WebMedia’22). Association for Computing Machinery, New York, NY, USA, 381–389. DOI: 10.1145/3539637.3557055
Felipe de Sá, Daniel Cavalcanti, and Valdecir Becker. 2023. Testes com usuários para análise de emoções em conteúdos audiovisuais utilizando EEG e eye tracking. In Anais Estendidos do XXIX Simpósio Brasileiro de Sistemas Multimídia e Web (Ribeirão Preto/SP). SBC, Porto Alegre, RS, Brasil, 63–66. DOI: 10.5753/webmedia_estendido.2023.235663
Tomás A. D’Amelio, Nicolás M. Bruno, Leandro A. Bugnon, Federico Zamberlan, and Enzo Tagliazucchi. 2023. Affective Computing as a Tool for Understanding Emotion Dynamics from Physiology: A Predictive Modeling Study of Arousal and Valence. In 2023 11th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). 1–7. DOI: 10.1109/ACIIW59127.2023.10388155
Diógines D’Avila Goldoni, Helena M. Reis, and Patrícia A. Jaques. 2023. Emoções na Aprendizagem: Estimando a Duração da Confusão e Aprimorando Intervenções Pedagógicas. Revista Brasileira de Informática na Educação 31 (dez. 2023), 1225–1247. DOI: 10.5753/rbie.2023.3433
Yingruo Fan, Jacqueline C. K. Lam, and Victor O. K. Li. 2021. Demographic effects on facial emotion expression: an interdisciplinary investigation of the facial action units of happiness. Scientific Reports 11, 1 (March 2021). DOI: 10.1038/s41598-021-84632-9
Luz Fernández-Aguilar, Beatriz Navarro-Bravo, Jorge Ricarte, Laura Ros, and Jose Miguel Latorre. 2019. How effective are films in inducing positive and negative emotional states? A meta-analysis. PLOS ONE 14, 11 (Nov. 2019), e0225040. DOI: 10.1371/journal.pone.0225040
M.Rosario González-Rodríguez, M.Carmen Díaz-Fernández, and Carmen Pacheco Gómez. 2020. Facial-expression recognition: An emergent approach to the measurement of tourist satisfaction through emotions. Telematics and Informatics 51 (Aug. 2020), 101404. DOI: 10.1016/j.tele.2020.101404
Timothy A Judge and Stephen P Robbins. 2017. Organizational behavior. Pearson.
Krzysztof Kutt, Dominika Drążyk, Szymon Bobek, and Grzegorz J. Nalepa. 2020. Personality-Based Affective Adaptation Methods for Intelligent Systems. Sensors 21, 1 (Dec. 2020), 163. DOI: 10.3390/s21010163
Richard A. Oakes, Lisa Peschel, and Nick E. Barraclough. 2024. Inter-subject correlation of audience facial expressions predicts audience engagement during theatrical performances. iScience (April 2024), 109843. DOI: 10.1016/j.isci.2024.109843
Guanxiong Pei, Haiying Li, Yandi Lu, Yanlei Wang, Shizhen Hua, and Taihao Li. 2024. Affective Computing: Recent Advances, Challenges, and Future Trends. Intelligent Computing 3 (Jan. 2024). DOI: 10.34133/icomputing.0076
Rainer Reisenzein, Andrea Hildebrandt, and Hannelore Weber. 2020. Personality and Emotion (2 ed.). Cambridge University Press, 81–100. DOI: 10.1017/9781108264822.009
Stanisław Saganowski, Joanna Komoszyńska, Maciej Behnke, Bartosz Perz, Łukasz D. Kaczmarek, and Przemysław Kazienko. 2021. Emognition Wearable Dataset 2020. DOI: 10.7910/DVN/R9WAF4