Characterization of academic genealogy trees by means of graph metrics
Abstract
Documenting individuals and their relationships using the genealogyaims to obtain knowledge about the origin, evolution and characteristics of interrelatedgroups. This approach allows to understand the formation and futuretrends of groups. In this context, the characterization of the academic genealogytrees by topological metrics allows to categorize individuals screened bytheir academic lineage and enables to obtain important new knowledge for understandingthe scientific scenario about an area. In this work, we present nineadapted and developed topological metrics to characterize academic genealogytrees. In order to show the feasibility of our characterization method by makinguse of topological metrics, we present an experiment focusing on the analysis ofthe genealogy of Johann Bernoulli (1667-1748), consisting of 81, 768 mathematiciansand 88, 955 relationships of academic advising.
References
S. V. DAVID & B. Y. HAYDEN (2012). Neurotree: A Collaborative, Graphical Database of the Academic Genealogy of Neuroscience. PloS one 7(10), e46 608.
B. DERRIDA, S. C. MANRUBIA & D. H. ZANETTE (1999). Statistical Properties of Genealogical Trees. Physicca Review Letters. 82, 1987–1990.
C. M. D. S. FREITAS, L. P. NEDEL, R. GALANTE, L. C. LAMB, A. S. SPRITZER, S. FUJII, J. P. M. DE OLIVEIRA, R. M. ARAUJO & M. M. MORO (2008). Extração de conhecimento e análise visual de redes sociais. SEMISH-SBC 106–120.
R. C. GRIFFITHS (1987). Counting genealogical trees. Journal of mathematical biology 25(4), 423–431.
K. HAMBERGER, M. HOUSEMAN & R.W. DOUGLAS (2011). Kinship network analysis. The Sage Handbook of Social Network Analysis 533–549.
R.E. HART & J.H. COSSUTH (2013). A Family Tree of Tropical Meteorology’s Academic Community and its Proposed Expansion. Bulletin of the American Meteorological Society 94(12).
J. HIRSCH (2005). An index to quantify an individual’s scientific research output. Proceedings of the National academy of Sciences of the United States of America 102(46), 16 569–16 572.
A. JACKSON (2007). A labor of love: the mathematics genealogy project. Notices of the AMS 54(8), 1002–1003.
R.D. MALMGREN, J.M. OTTINO & L.A.N. AMARAL (2010). The role of mentorship in protégé performance. Nature 465(7298), 622–626.
R. F. MATHEUS, F. S. PARREIRAS & T. A. S. PARREIRAS (2006). Análise de redes sociais como metodologia de apoio para a discuss˜ao da interdisciplinaridade na ciência da informação. Ciência da Informação 35(1), 72–93.
J.P. MENA-CHALCO & R.M. CESAR-JR. (2013). Bibliometria e Cientometria: reflex˜oes teóricas e interfaces, chapter Prospecção de dados acadêmicos de currículos Lattes através de scriptLattes, 109–128. S˜ao Carlos: Pedro & Jo˜ao Editores.
R. MILO, S. SHEN-ORR, S. ITZKOVITZ, N. KASHTAN, D. CHKLOVSKII & U. ALON (2002). Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827.
P. NARAYAN (2011). Mathematics Genealogy Networks. Master’s thesis, University of Oxford, United Kingdom.
