Metodologia Computacional para Detecção Automática do Glaucoma em Imagens de Fundo de Olho
Abstract
Glaucoma is a disease caused by optic nerve damage. Manifests itself in chronic or acute way, when chronic is characterized by loss of peripheral vision. When acute, is because the pressure inside the eye becomes extremely high and causes sudden vision loss. This study aims to develop a computational method to detect glaucoma images of fundus by calculating the ratio of the Optic Disc Cup diameter and diameter of the Optic Disc, termed as Cup-to-Disc ratio. The method still under development, obtained 91.75 % in the OD segmentation.
References
Gonçãlves, M. R., Guedes, M. d. M. R., Chaves, M. A. P. D., de Lima Pereira, C. C., and Otton, R. (2013). Análise dos fatores de risco e epidemiologia em campanha de prevenção da cegueira pelo glaucoma em jo˜ao pessoa, paraíba. Rev Bras Oftalmol, 72(6):396–9.
Gonzalez, R. and Woods, R. (2008). Digital Image Processing. Pearson Prentice Hall, 3 edition.
Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7):881–892.
Maraschin, D., Maestri, M., Feller, N., Nedel, L., and Duncan, B. (2011). Análise de imagens de retinografia digital com imagej customizado. In WIM – XI Workshop de Informática Médica, Natal, RN.
Paranhos-Junior, A., Omi, C., and Prata-Junior, J. (2009). Sociedade brasileira de glaucoma: Iii consenso brasileiro de glaucoma primário de ângulo aberto. Sao Paulo: BestPoint, pages 77–96.
Sivaswamy, J., Krishnadas, S., Datt Joshi, G., Jain, M., Tabish, S., and Ujjwaft, A. (2014). Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation. In Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on, pages 53–56. IEEE.
