Detecção de lesões em imagens termográficas da mama utilizando Índice de Similaridade de Jaccard e Artificial Crawlers
Abstract
This paper proposes a methodology to detection of lesions in breast thermography images, helping specialists in early diagnosis helping specialists in early diagnosis of mamma cancer. The techniques of image processing, artificial life models and computational intelligence are used. The proposed methodology presented 78% of accuracy, 50% of sensitivity and 86% of specificity.
References
Adams, R. and Bischof, L. (1994). Seeded region growing. volume 16, pages 641–647. IEEE.
Borchartt, T. B., Conci, A., Lima, R. C., Resmini, R., and Sanchez, A. (2013). Breast thermography from an image processing viewpoint: A survey. Signal Processing, 93(10):2785–2803.
Gonçãlves, W. N., Machado, B. B., and Bruno, O. M. (2014). Texture descriptor combining fractal dimension and artificial crawlers. Physica A: Statistical Mechanics and its Applications, 395:358–370.
INCA (2014). Tipos de cancer: Mama. http://www2.inca.gov.br/wps/wcm/ connect/tiposdecancer/site/home/mama/cancer_mama+. Acesso em: 16/10/2014.
Klein, S., Staring, M., and Pluim, J. P. (2007). Evaluation of optimization methods for nonrigid medical image registration using mutual information and b-splines. Image Processing, IEEE Transactions on, 16(12):2879–2890.
PROENG (2012). Image processing and image analyses applied to mastology. http: //visual.ic.uff.br/en/proeng/. Acesso em: 19/06/2012.
Real, R. and Vargas, J. M. (1996). The probabilistic basis of jaccard’s index of similarity. Systematic biology, pages 380–385.
Steinwart, I. and Christmann, A. (2008). Support vector machines. Springer.
Borchartt, T. B., Conci, A., Lima, R. C., Resmini, R., and Sanchez, A. (2013). Breast thermography from an image processing viewpoint: A survey. Signal Processing, 93(10):2785–2803.
Gonçãlves, W. N., Machado, B. B., and Bruno, O. M. (2014). Texture descriptor combining fractal dimension and artificial crawlers. Physica A: Statistical Mechanics and its Applications, 395:358–370.
INCA (2014). Tipos de cancer: Mama. http://www2.inca.gov.br/wps/wcm/ connect/tiposdecancer/site/home/mama/cancer_mama+. Acesso em: 16/10/2014.
Klein, S., Staring, M., and Pluim, J. P. (2007). Evaluation of optimization methods for nonrigid medical image registration using mutual information and b-splines. Image Processing, IEEE Transactions on, 16(12):2879–2890.
PROENG (2012). Image processing and image analyses applied to mastology. http: //visual.ic.uff.br/en/proeng/. Acesso em: 19/06/2012.
Real, R. and Vargas, J. M. (1996). The probabilistic basis of jaccard’s index of similarity. Systematic biology, pages 380–385.
Steinwart, I. and Christmann, A. (2008). Support vector machines. Springer.
Published
2015-07-20
How to Cite
BELFORT, Caio; SILVA, Aristófanes; PAIVA, Anselmo.
Detecção de lesões em imagens termográficas da mama utilizando Índice de Similaridade de Jaccard e Artificial Crawlers. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 15. , 2015, Recife.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2015
.
p. 225-228.
ISSN 2763-8952.
DOI: https://doi.org/10.5753/sbcas.2015.10388.
