Abordagem Deep Learning para Classificação de Lesões Mamárias

  • Roberto Pereira UFMA
  • Caio Matos UFMA
  • João Diniz UFMA
  • Geraldo Braz Junior UFMA
  • João de Almeida UFMA
  • Aristófanes Silva UFMA
  • Anselmo de Paiva UFMA

Abstract


Female breast cancer is a major cause of death in western countries. Several computer aid techniques have been developed seeking to help radiologists in task of detection and diagnosis of breast abnormalities. Recently, deep learning techniques have shown good results in the image classification issues. In this paper, we present a metodology to distinguish mass and normal tissue extracted from mammograms using deep convolutional neural networks.

References

Chawla, N. V., Bowyer, K.W., Hall, L. O., and Kegelmeyer,W. P. (2002). Smote: synthetic minority over-sampling technique. Journal of artificial intelligence research, pages 321–357.

Heath, M., Bowyer, K., Kopans, D., Kegelmeyer Jr, P., Moore, R., Chang, K., and Munishkumaran, S. (1998). Current status of the digital database for screening mammography. In Digital mammography, pages 457–460. Springer.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105.

Szegedy, C., Liu,W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9.
Published
2016-07-04
PEREIRA, Roberto; MATOS, Caio; DINIZ, João; BRAZ JUNIOR, Geraldo; DE ALMEIDA, João; SILVA, Aristófanes; DE PAIVA, Anselmo. Abordagem Deep Learning para Classificação de Lesões Mamárias. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 16. , 2016, Porto Alegre. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2016 . p. 2597-2600. ISSN 2763-8952. DOI: https://doi.org/10.5753/sbcas.2016.9906.

Most read articles by the same author(s)