Abordagem Deep Learning para Classificação de Lesões Mamárias
Resumo
O câncer de mama é uma das principais causas de morte de mulheres ocidentais. Várias técnicas têm sido desenvolvidas para auxiliar radiologistas na tarefa de detecção e diagnóstico de lesões mamárias. Recentemente, a técnica de deep learning tem apresentado resultados eficientes na classificação de imagens. Este artigo propõe uma metodologia para classificar tecidos de mamografias em massa e não-massa com o uso de redes neurais convolucionais profundas.
Referências
Heath, M., Bowyer, K., Kopans, D., Kegelmeyer Jr, P., Moore, R., Chang, K., and Munishkumaran, S. (1998). Current status of the digital database for screening mammography. In Digital mammography, pages 457–460. Springer.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105.
Szegedy, C., Liu,W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9.