Classificação de Doença Hepática Gordurosa Não Alcoólica em Imagens Térmicas usando Temporal Convolutional Networks
Abstract
Among the existing liver pathologies, Non-Alcoholic Fatty Liver Disease (NAFLD) is the one that affects the largest portion of the world’s population, approximately 2 billion people. NAFLD has considerable chances of progressing to more severe clinical conditions, such as fibrosis and liver cirrhosis, representing serious risks to the lives of patients. Thus, it is vital that its detection be done in an agile, accurate and preferably non-invasive way, with the use of thermal images being a highly supported method in this area. The present work presents the development of a model for classifying NAFLD from time series in thermographs. Temporal Convolutional Networks combined with image processing strategies were used in the composition of the proposal.References
Brioschi, M. L., Yeng, L. T., Colman, D., Silva, F. M. M., and Teixeira, M. J. (2006). Imaginologia infravermelha no estudo avançado da dor de origem visceral.
Cotrim, H. P., Parise, E. R., Figueiredo-Mendes, C., Galizzi-Filho, J., Porta, G., and Oliveira, C. P. (2016). Nonalcoholic fatty liver disease brazilian society of hepatology consensus. Arquivos de gastroenterologia.
Farooq, M. A. and Corcoran, P. (2020). Infrared imaging for human thermography and breast tumor classification using thermal images. In2020 31st Irish Signals and Systems Conference (ISSC), pages 1–6. IEEE
Lea, C., Flynn, M. D., Vidal, R., Reiter, A., Hager, G. D. (2017). Temporal convolutional networks for action segmentation and detection. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Ozougwu, J. C. (2017). Physiology of the liver.International Journal of Research inPharmacy and Biosciences, 4(8):13–24
Santana, J. T., Mota, A. V. H., Gonzaga, Y. H. G., Gomes, R. M. O. P., Melo, L. C., Noronha, V. F. C. M., Santos, A. C. O. L., de Jesus, J. B., Lima, S. O., and Cruz, J. F. (2021). Perfil metabólico e antropométrico dos pacientes obesos e não obesos portadores de esteatose hepática não alcóolica. Revista Eletrônica Acervo Saúde, 13(2):e5525–e5525.
Schwabe, R. F., Tabas, I., and Pajvani, U. B. (2020). Mechanisms of fibrosis development in nonalcoholic steatohepatitis.
Wahab, A. A., Salim, M., Yunus, J., and Ramlee, M. H. (2018). Comparative evaluation of medical thermal image enhancement techniques for breast cancer detection. Journal of Engineering and Technological Sciences.
Yadav, S. S. and Jadhav, S. M. (2019). Deep convolutional neural network based medical image classification for disease diagnosis.
Younossi, Zobair, et al. ”Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention.”Nature reviews Gastroenterology & hepatology 15.1(2018)
Zuluaga-Gomez, J., Al Masry, Z., Benaggoune, K., Meraghni, S., and Zerhouni, N.(2020). A cnn-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging Visualization.
Cotrim, H. P., Parise, E. R., Figueiredo-Mendes, C., Galizzi-Filho, J., Porta, G., and Oliveira, C. P. (2016). Nonalcoholic fatty liver disease brazilian society of hepatology consensus. Arquivos de gastroenterologia.
Farooq, M. A. and Corcoran, P. (2020). Infrared imaging for human thermography and breast tumor classification using thermal images. In2020 31st Irish Signals and Systems Conference (ISSC), pages 1–6. IEEE
Lea, C., Flynn, M. D., Vidal, R., Reiter, A., Hager, G. D. (2017). Temporal convolutional networks for action segmentation and detection. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Ozougwu, J. C. (2017). Physiology of the liver.International Journal of Research inPharmacy and Biosciences, 4(8):13–24
Santana, J. T., Mota, A. V. H., Gonzaga, Y. H. G., Gomes, R. M. O. P., Melo, L. C., Noronha, V. F. C. M., Santos, A. C. O. L., de Jesus, J. B., Lima, S. O., and Cruz, J. F. (2021). Perfil metabólico e antropométrico dos pacientes obesos e não obesos portadores de esteatose hepática não alcóolica. Revista Eletrônica Acervo Saúde, 13(2):e5525–e5525.
Schwabe, R. F., Tabas, I., and Pajvani, U. B. (2020). Mechanisms of fibrosis development in nonalcoholic steatohepatitis.
Wahab, A. A., Salim, M., Yunus, J., and Ramlee, M. H. (2018). Comparative evaluation of medical thermal image enhancement techniques for breast cancer detection. Journal of Engineering and Technological Sciences.
Yadav, S. S. and Jadhav, S. M. (2019). Deep convolutional neural network based medical image classification for disease diagnosis.
Younossi, Zobair, et al. ”Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention.”Nature reviews Gastroenterology & hepatology 15.1(2018)
Zuluaga-Gomez, J., Al Masry, Z., Benaggoune, K., Meraghni, S., and Zerhouni, N.(2020). A cnn-based methodology for breast cancer diagnosis using thermal images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging Visualization.
Published
2023-06-27
How to Cite
FARIAS, Marcos Vinícius de Sousa; SILVA, Italo Francyles Santos da; SILVA, Aristófanes Corrêa; MARTINS FILHO, Henrique Manoel de Araújo; PAIVA, Anselmo Cardoso.
Classificação de Doença Hepática Gordurosa Não Alcoólica em Imagens Térmicas usando Temporal Convolutional Networks. In: BRAZILIAN SYMPOSIUM ON COMPUTING APPLIED TO HEALTH (SBCAS), 23. , 2023, São Paulo/SP.
Anais [...].
Porto Alegre: Sociedade Brasileira de Computação,
2023
.
p. 515-520.
ISSN 2763-8952.
DOI: https://doi.org/10.5753/sbcas.2023.229802.
